1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
REAL FUNCTION CLANGB( NORM, N, KL, KU, AB, LDAB,
$ WORK )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER KL, KU, LDAB, N
* ..
* .. Array Arguments ..
REAL WORK( * )
COMPLEX AB( LDAB, * )
* ..
*
* Purpose
* =======
*
* CLANGB returns the value of the one norm, or the Frobenius norm, or
* the infinity norm, or the element of largest absolute value of an
* n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
*
* Description
* ===========
*
* CLANGB returns the value
*
* CLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
* (
* ( norm1(A), NORM = '1', 'O' or 'o'
* (
* ( normI(A), NORM = 'I' or 'i'
* (
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a matrix norm.
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies the value to be returned in CLANGB as described
* above.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0. When N = 0, CLANGB is
* set to zero.
*
* KL (input) INTEGER
* The number of sub-diagonals of the matrix A. KL >= 0.
*
* KU (input) INTEGER
* The number of super-diagonals of the matrix A. KU >= 0.
*
* AB (input) COMPLEX array, dimension (LDAB,N)
* The band matrix A, stored in rows 1 to KL+KU+1. The j-th
* column of A is stored in the j-th column of the array AB as
* follows:
* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
*
* LDAB (input) INTEGER
* The leading dimension of the array AB. LDAB >= KL+KU+1.
*
* WORK (workspace) REAL array, dimension (LWORK),
* where LWORK >= N when NORM = 'I'; otherwise, WORK is not
* referenced.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K, L
REAL SCALE, SUM, VALUE
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
DO 20 J = 1, N
DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
VALUE = MAX( VALUE, ABS( AB( I, J ) ) )
10 CONTINUE
20 CONTINUE
ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
* Find norm1(A).
*
VALUE = ZERO
DO 40 J = 1, N
SUM = ZERO
DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
SUM = SUM + ABS( AB( I, J ) )
30 CONTINUE
VALUE = MAX( VALUE, SUM )
40 CONTINUE
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
* Find normI(A).
*
DO 50 I = 1, N
WORK( I ) = ZERO
50 CONTINUE
DO 70 J = 1, N
K = KU + 1 - J
DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
60 CONTINUE
70 CONTINUE
VALUE = ZERO
DO 80 I = 1, N
VALUE = MAX( VALUE, WORK( I ) )
80 CONTINUE
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
DO 90 J = 1, N
L = MAX( 1, J-KU )
K = KU + 1 - J + L
CALL CLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
90 CONTINUE
VALUE = SCALE*SQRT( SUM )
END IF
*
CLANGB = VALUE
RETURN
*
* End of CLANGB
*
END
|