File: clanht.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (126 lines) | stat: -rw-r--r-- 3,579 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
      REAL             FUNCTION CLANHT( NORM, N, D, E )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            N
*     ..
*     .. Array Arguments ..
      REAL               D( * )
      COMPLEX            E( * )
*     ..
*
*  Purpose
*  =======
*
*  CLANHT  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the  element of  largest absolute value  of a
*  complex Hermitian tridiagonal matrix A.
*
*  Description
*  ===========
*
*  CLANHT returns the value
*
*     CLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in CLANHT as described
*          above.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.  When N = 0, CLANHT is
*          set to zero.
*
*  D       (input) REAL array, dimension (N)
*          The diagonal elements of A.
*
*  E       (input) COMPLEX array, dimension (N-1)
*          The (n-1) sub-diagonal or super-diagonal elements of A.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      REAL               ANORM, SCALE, SUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLASSQ, SLASSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 ) THEN
         ANORM = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         ANORM = ABS( D( N ) )
         DO 10 I = 1, N - 1
            ANORM = MAX( ANORM, ABS( D( I ) ) )
            ANORM = MAX( ANORM, ABS( E( I ) ) )
   10    CONTINUE
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
     $         LSAME( NORM, 'I' ) ) THEN
*
*        Find norm1(A).
*
         IF( N.EQ.1 ) THEN
            ANORM = ABS( D( 1 ) )
         ELSE
            ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ),
     $              ABS( E( N-1 ) )+ABS( D( N ) ) )
            DO 20 I = 2, N - 1
               ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+
     $                 ABS( E( I-1 ) ) )
   20       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         IF( N.GT.1 ) THEN
            CALL CLASSQ( N-1, E, 1, SCALE, SUM )
            SUM = 2*SUM
         END IF
         CALL SLASSQ( N, D, 1, SCALE, SUM )
         ANORM = SCALE*SQRT( SUM )
      END IF
*
      CLANHT = ANORM
      RETURN
*
*     End of CLANHT
*
      END