1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
SUBROUTINE CLAPMT( FORWRD, M, N, X, LDX, K )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
LOGICAL FORWRD
INTEGER LDX, M, N
* ..
* .. Array Arguments ..
INTEGER K( * )
COMPLEX X( LDX, * )
* ..
*
* Purpose
* =======
*
* CLAPMT rearranges the columns of the M by N matrix X as specified
* by the permutation K(1),K(2),...,K(N) of the integers 1,...,N.
* If FORWRD = .TRUE., forward permutation:
*
* X(*,K(J)) is moved X(*,J) for J = 1,2,...,N.
*
* If FORWRD = .FALSE., backward permutation:
*
* X(*,J) is moved to X(*,K(J)) for J = 1,2,...,N.
*
* Arguments
* =========
*
* FORWRD (input) LOGICAL
* = .TRUE., forward permutation
* = .FALSE., backward permutation
*
* M (input) INTEGER
* The number of rows of the matrix X. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix X. N >= 0.
*
* X (input/output) COMPLEX array, dimension (LDX,N)
* On entry, the M by N matrix X.
* On exit, X contains the permuted matrix X.
*
* LDX (input) INTEGER
* The leading dimension of the array X, LDX >= MAX(1,M).
*
* K (input) INTEGER array, dimension (N)
* On entry, K contains the permutation vector.
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, II, J, IN
COMPLEX TEMP
* ..
* .. Executable Statements ..
*
IF( N.LE.1 )
$ RETURN
*
DO 10 I = 1, N
K( I ) = -K( I )
10 CONTINUE
*
IF( FORWRD ) THEN
*
* Forward permutation
*
DO 60 I = 1, N
*
IF( K( I ).GT.0 )
$ GO TO 40
*
J = I
K( J ) = -K( J )
IN = K( J )
*
20 CONTINUE
IF( K( IN ).GT.0 )
$ GO TO 40
*
DO 30 II = 1, M
TEMP = X( II, J )
X( II, J ) = X( II, IN )
X( II, IN ) = TEMP
30 CONTINUE
*
K( IN ) = -K( IN )
J = IN
IN = K( IN )
GO TO 20
*
40 CONTINUE
*
60 CONTINUE
*
ELSE
*
* Backward permutation
*
DO 110 I = 1, N
*
IF( K( I ).GT.0 )
$ GO TO 100
*
K( I ) = -K( I )
J = K( I )
80 CONTINUE
IF( J.EQ.I )
$ GO TO 100
*
DO 90 II = 1, M
TEMP = X( II, I )
X( II, I ) = X( II, J )
X( II, J ) = TEMP
90 CONTINUE
*
K( J ) = -K( J )
J = K( J )
GO TO 80
*
100 CONTINUE
110 CONTINUE
*
END IF
*
RETURN
*
* End of CLAPMT
*
END
|