File: clatzm.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (145 lines) | stat: -rw-r--r-- 4,267 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
      SUBROUTINE CLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE
      INTEGER            INCV, LDC, M, N
      COMPLEX            TAU
*     ..
*     .. Array Arguments ..
      COMPLEX            C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CLATZM applies a Householder matrix generated by CTZRQF to a matrix.
*
*  Let P = I - tau*u*u',   u = ( 1 ),
*                              ( v )
*  where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
*  SIDE = 'R'.
*
*  If SIDE equals 'L', let
*         C = [ C1 ] 1
*             [ C2 ] m-1
*               n
*  Then C is overwritten by P*C.
*
*  If SIDE equals 'R', let
*         C = [ C1, C2 ] m
*                1  n-1
*  Then C is overwritten by C*P.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': form P * C
*          = 'R': form C * P
*
*  M       (input) INTEGER
*          The number of rows of the matrix C.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C.
*
*  V       (input) COMPLEX array, dimension
*                  (1 + (M-1)*abs(INCV)) if SIDE = 'L'
*                  (1 + (N-1)*abs(INCV)) if SIDE = 'R'
*          The vector v in the representation of P. V is not used
*          if TAU = 0.
*
*  INCV    (input) INTEGER
*          The increment between elements of v. INCV <> 0
*
*  TAU     (input) COMPLEX
*          The value tau in the representation of P.
*
*  C1      (input/output) COMPLEX array, dimension
*                         (LDC,N) if SIDE = 'L'
*                         (M,1)   if SIDE = 'R'
*          On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
*          if SIDE = 'R'.
*
*          On exit, the first row of P*C if SIDE = 'L', or the first
*          column of C*P if SIDE = 'R'.
*
*  C2      (input/output) COMPLEX array, dimension
*                         (LDC, N)   if SIDE = 'L'
*                         (LDC, N-1) if SIDE = 'R'
*          On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
*          m x (n - 1) matrix C2 if SIDE = 'R'.
*
*          On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
*          if SIDE = 'R'.
*
*  LDC     (input) INTEGER
*          The leading dimension of the arrays C1 and C2.
*          LDC >= max(1,M).
*
*  WORK    (workspace) COMPLEX array, dimension
*                      (N) if SIDE = 'L'
*                      (M) if SIDE = 'R'
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CCOPY, CGEMV, CGERC, CGERU, CLACGV
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
      IF( ( MIN( M, N ).EQ.0 ) .OR. ( TAU.EQ.ZERO ) )
     $   RETURN
*
      IF( LSAME( SIDE, 'L' ) ) THEN
*
*        w :=  conjg( C1 + v' * C2 )
*
         CALL CCOPY( N, C1, LDC, WORK, 1 )
         CALL CLACGV( N, WORK, 1 )
         CALL CGEMV( 'Conjugate transpose', M-1, N, ONE, C2, LDC, V,
     $               INCV, ONE, WORK, 1 )
*
*        [ C1 ] := [ C1 ] - tau* [ 1 ] * w'
*        [ C2 ]    [ C2 ]        [ v ]
*
         CALL CLACGV( N, WORK, 1 )
         CALL CAXPY( N, -TAU, WORK, 1, C1, LDC )
         CALL CGERU( M-1, N, -TAU, V, INCV, WORK, 1, C2, LDC )
*
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*        w := C1 + C2 * v
*
         CALL CCOPY( M, C1, 1, WORK, 1 )
         CALL CGEMV( 'No transpose', M, N-1, ONE, C2, LDC, V, INCV, ONE,
     $               WORK, 1 )
*
*        [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v']
*
         CALL CAXPY( M, -TAU, WORK, 1, C1, 1 )
         CALL CGERC( M, N-1, -TAU, WORK, 1, V, INCV, C2, LDC )
      END IF
*
      RETURN
*
*     End of CLATZM
*
      END