1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
SUBROUTINE CPOCON( UPLO, N, A, LDA, ANORM, RCOND, WORK, RWORK,
$ INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N
REAL ANORM, RCOND
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CPOCON estimates the reciprocal of the condition number (in the
* 1-norm) of a complex Hermitian positive definite matrix using the
* Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF.
*
* An estimate is obtained for norm(inv(A)), and the reciprocal of the
* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The triangular factor U or L from the Cholesky factorization
* A = U**H*U or A = L*L**H, as computed by CPOTRF.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* ANORM (input) REAL
* The 1-norm (or infinity-norm) of the Hermitian matrix A.
*
* RCOND (output) REAL
* The reciprocal of the condition number of the matrix A,
* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
* estimate of the 1-norm of inv(A) computed in this routine.
*
* WORK (workspace) COMPLEX array, dimension (2*N)
*
* RWORK (workspace) REAL array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
CHARACTER NORMIN
INTEGER IX, KASE
REAL AINVNM, SCALE, SCALEL, SCALEU, SMLNUM
COMPLEX ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICAMAX
REAL SLAMCH
EXTERNAL LSAME, ICAMAX, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CLACON, CLATRS, CSRSCL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, MAX, REAL
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPOCON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.EQ.ZERO ) THEN
RETURN
END IF
*
SMLNUM = SLAMCH( 'Safe minimum' )
*
* Estimate the 1-norm of inv(A).
*
KASE = 0
NORMIN = 'N'
10 CONTINUE
CALL CLACON( N, WORK( N+1 ), WORK, AINVNM, KASE )
IF( KASE.NE.0 ) THEN
IF( UPPER ) THEN
*
* Multiply by inv(U').
*
CALL CLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
$ NORMIN, N, A, LDA, WORK, SCALEL, RWORK, INFO )
NORMIN = 'Y'
*
* Multiply by inv(U).
*
CALL CLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
$ A, LDA, WORK, SCALEU, RWORK, INFO )
ELSE
*
* Multiply by inv(L).
*
CALL CLATRS( 'Lower', 'No transpose', 'Non-unit', NORMIN, N,
$ A, LDA, WORK, SCALEL, RWORK, INFO )
NORMIN = 'Y'
*
* Multiply by inv(L').
*
CALL CLATRS( 'Lower', 'Conjugate transpose', 'Non-unit',
$ NORMIN, N, A, LDA, WORK, SCALEU, RWORK, INFO )
END IF
*
* Multiply by 1/SCALE if doing so will not cause overflow.
*
SCALE = SCALEL*SCALEU
IF( SCALE.NE.ONE ) THEN
IX = ICAMAX( N, WORK, 1 )
IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
$ GO TO 20
CALL CSRSCL( N, SCALE, WORK, 1 )
END IF
GO TO 10
END IF
*
* Compute the estimate of the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / AINVNM ) / ANORM
*
20 CONTINUE
RETURN
*
* End of CPOCON
*
END
|