1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
SUBROUTINE CPPTRI( UPLO, N, AP, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, N
* ..
* .. Array Arguments ..
COMPLEX AP( * )
* ..
*
* Purpose
* =======
*
* CPPTRI computes the inverse of a complex Hermitian positive definite
* matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
* computed by CPPTRF.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangular factor is stored in AP;
* = 'L': Lower triangular factor is stored in AP.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* AP (input/output) COMPLEX array, dimension (N*(N+1)/2)
* On entry, the triangular factor U or L from the Cholesky
* factorization A = U**H*U or A = L*L**H, packed columnwise as
* a linear array. The j-th column of U or L is stored in the
* array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
*
* On exit, the upper or lower triangle of the (Hermitian)
* inverse of A, overwriting the input factor U or L.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the (i,i) element of the factor U or L is
* zero, and the inverse could not be computed.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER J, JC, JJ, JJN
REAL AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
COMPLEX CDOTC
EXTERNAL LSAME, CDOTC
* ..
* .. External Subroutines ..
EXTERNAL CHPR, CSSCAL, CTPMV, CTPTRI, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPPTRI', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Invert the triangular Cholesky factor U or L.
*
CALL CTPTRI( UPLO, 'Non-unit', N, AP, INFO )
IF( INFO.GT.0 )
$ RETURN
IF( UPPER ) THEN
*
* Compute the product inv(U) * inv(U)'.
*
JJ = 0
DO 10 J = 1, N
JC = JJ + 1
JJ = JJ + J
IF( J.GT.1 )
$ CALL CHPR( 'Upper', J-1, ONE, AP( JC ), 1, AP )
AJJ = AP( JJ )
CALL CSSCAL( J, AJJ, AP( JC ), 1 )
10 CONTINUE
*
ELSE
*
* Compute the product inv(L)' * inv(L).
*
JJ = 1
DO 20 J = 1, N
JJN = JJ + N - J + 1
AP( JJ ) = REAL( CDOTC( N-J+1, AP( JJ ), 1, AP( JJ ), 1 ) )
IF( J.LT.N )
$ CALL CTPMV( 'Lower', 'Conjugate transpose', 'Non-unit',
$ N-J, AP( JJN ), AP( JJ+1 ), 1 )
JJ = JJN
20 CONTINUE
END IF
*
RETURN
*
* End of CPPTRI
*
END
|