1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
SUBROUTINE CPTTRS( UPLO, N, NRHS, D, E, B, LDB, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
REAL D( * )
COMPLEX B( LDB, * ), E( * )
* ..
*
* Purpose
* =======
*
* CPTTRS solves a system of linear equations A * X = B with a
* Hermitian positive definite tridiagonal matrix A using the
* factorization A = U**H*D*U or A = L*D*L**H computed by CPTTRF.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the superdiagonal or the subdiagonal
* of the tridiagonal matrix A is stored and the form of the
* factorization:
* = 'U': E is the superdiagonal of U, and A = U'*D*U;
* = 'L': E is the subdiagonal of L, and A = L*D*L'.
* (The two forms are equivalent if A is real.)
*
* N (input) INTEGER
* The order of the tridiagonal matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the diagonal matrix D from the
* factorization computed by CPTTRF.
*
* E (input) COMPLEX array, dimension (N-1)
* The (n-1) off-diagonal elements of the unit bidiagonal
* factor U or L from the factorization computed by CPTTRF
* (see UPLO).
*
* B (input/output) REAL array, dimension (LDB,NRHS)
* On entry, the right hand side matrix B.
* On exit, the solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG, MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPTTRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( UPPER ) THEN
*
* Solve A * X = B using the factorization A = U'*D*U,
* overwriting each right hand side vector with its solution.
*
DO 30 J = 1, NRHS
*
* Solve U' * x = b.
*
DO 10 I = 2, N
B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) )
10 CONTINUE
*
* Solve D * U * x = b.
*
B( N, J ) = B( N, J ) / D( N )
DO 20 I = N - 1, 1, -1
B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
20 CONTINUE
30 CONTINUE
ELSE
*
* Solve A * X = B using the factorization A = L*D*L',
* overwriting each right hand side vector with its solution.
*
DO 60 J = 1, NRHS
*
* Solve L * x = b.
*
DO 40 I = 2, N
B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
40 CONTINUE
*
* Solve D * L' * x = b.
*
B( N, J ) = B( N, J ) / D( N )
DO 50 I = N - 1, 1, -1
B( I, J ) = B( I, J ) / D( I ) -
$ B( I+1, J )*CONJG( E( I ) )
50 CONTINUE
60 CONTINUE
END IF
*
RETURN
*
* End of CPTTRS
*
END
|