1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
SUBROUTINE CSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
$ LRWORK, IWORK, LIWORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER COMPZ
INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL D( * ), E( * ), RWORK( * )
COMPLEX WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* CSTEDC computes all eigenvalues and, optionally, eigenvectors of a
* symmetric tridiagonal matrix using the divide and conquer method.
* The eigenvectors of a full or band complex Hermitian matrix can also
* be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this
* matrix to tridiagonal form.
*
* This code makes very mild assumptions about floating point
* arithmetic. It will work on machines with a guard digit in
* add/subtract, or on those binary machines without guard digits
* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
* It could conceivably fail on hexadecimal or decimal machines
* without guard digits, but we know of none. See SLAED3 for details.
*
* Arguments
* =========
*
* COMPZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only.
* = 'I': Compute eigenvectors of tridiagonal matrix also.
* = 'V': Compute eigenvectors of original Hermitian matrix
* also. On entry, Z contains the unitary matrix used
* to reduce the original matrix to tridiagonal form.
*
* N (input) INTEGER
* The dimension of the symmetric tridiagonal matrix. N >= 0.
*
* D (input/output) REAL array, dimension (N)
* On entry, the diagonal elements of the tridiagonal matrix.
* On exit, if INFO = 0, the eigenvalues in ascending order.
*
* E (input/output) REAL array, dimension (N-1)
* On entry, the subdiagonal elements of the tridiagonal matrix.
* On exit, E has been destroyed.
*
* Z (input/output) COMPLEX array, dimension (LDZ,N)
* On entry, if COMPZ = 'V', then Z contains the unitary
* matrix used in the reduction to tridiagonal form.
* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
* orthonormal eigenvectors of the original Hermitian matrix,
* and if COMPZ = 'I', Z contains the orthonormal eigenvectors
* of the symmetric tridiagonal matrix.
* If COMPZ = 'N', then Z is not referenced.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1.
* If eigenvectors are desired, then LDZ >= max(1,N).
*
* WORK (workspace/output) COMPLEX array, dimension (LWORK)
* On exit, if LWORK > 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1.
* If COMPZ = 'V' and N > 1, LWORK must be at least N*N.
*
* RWORK (workspace/output) REAL array,
* dimension (LRWORK)
* On exit, if LRWORK > 0, RWORK(1) returns the optimal LRWORK.
*
* LRWORK (input) INTEGER
* The dimension of the array RWORK.
* If COMPZ = 'N' or N <= 1, LRWORK must be at least 1.
* If COMPZ = 'V' and N > 1, LRWORK must be at least
* 1 + 3*N + 2*N*lg N + 3*N**2 ,
* where lg( N ) = smallest integer k such
* that 2**k >= N.
* If COMPZ = 'I' and N > 1, LRWORK must be at least
* 1 + 3*N + 2*N*lg N + 3*N**2 .
*
* IWORK (workspace/output) INTEGER array, dimension (LIWORK)
* On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK.
* If COMPZ = 'N' or N <= 1, LIWORK must be at least 1.
* If COMPZ = 'V' or N > 1, LIWORK must be at least
* 6 + 6*N + 5*N*lg N.
* If COMPZ = 'I' or N > 1, LIWORK must be at least
* 2 + 5*N .
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: The algorithm failed to compute an eigenvalue while
* working on the submatrix lying in rows and columns
* INFO/(N+1) through mod(INFO,N+1).
*
* =====================================================================
*
* .. Parameters ..
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
REAL ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
* ..
* .. Local Scalars ..
INTEGER END, I, ICOMPZ, II, J, K, LGN, LIWMIN, LL,
$ LRWMIN, LWMIN, M, NM1, START
REAL EPS, ORGNRM, P, TINY
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANST
EXTERNAL LSAME, SLAMCH, SLANST
* ..
* .. External Subroutines ..
EXTERNAL CLACPY, CLACRM, CLAED0, CSTEQR, CSWAP, SLASCL,
$ SLASET, SSTEDC, SSTEQR, SSTERF, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX, MOD, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( LSAME( COMPZ, 'N' ) ) THEN
ICOMPZ = 0
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
ICOMPZ = 1
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
ICOMPZ = 2
ELSE
ICOMPZ = -1
END IF
IF( N.LE.1 .OR. ICOMPZ.LE.0 ) THEN
LWMIN = 1
LIWMIN = 1
LRWMIN = 1
ELSE
LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IF( ICOMPZ.EQ.1 ) THEN
LWMIN = N*N
LRWMIN = 1 + 3*N + 2*N*LGN + 3*N**2
LIWMIN = 6 + 6*N + 5*N*LGN
ELSE IF( ICOMPZ.EQ.2 ) THEN
LWMIN = 1
LRWMIN = 1 + 3*N + 2*N*LGN + 3*N**2
LIWMIN = 2 + 5*N
END IF
END IF
IF( ICOMPZ.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
$ N ) ) ) THEN
INFO = -6
ELSE IF( LWORK.LT.LWMIN ) THEN
INFO = -8
ELSE IF( LRWORK.LT.LRWMIN ) THEN
INFO = -10
ELSE IF( LIWORK.LT.LIWMIN ) THEN
INFO = -12
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CSTEDC', -INFO )
GO TO 70
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ GO TO 70
IF( N.EQ.1 ) THEN
IF( ICOMPZ.NE.0 )
$ Z( 1, 1 ) = ONE
GO TO 70
END IF
*
* If the following conditional clause is removed, then the routine
* will use the Divide and Conquer routine to compute only the
* eigenvalues, which requires (3N + 3N**2) real workspace and
* (2 + 5N + 2N lg(N)) integer workspace.
* Since on many architectures SSTERF is much faster than any other
* algorithm for finding eigenvalues only, it is used here
* as the default.
*
* If COMPZ = 'N', use SSTERF to compute the eigenvalues.
*
IF( ICOMPZ.EQ.0 ) THEN
CALL SSTERF( N, D, E, INFO )
GO TO 70
END IF
*
* If N is smaller than the minimum divide size (SMLSIZ+1), then
* solve the problem with another solver.
*
IF( N.LE.SMLSIZ ) THEN
IF( ICOMPZ.EQ.0 ) THEN
CALL SSTERF( N, D, E, INFO )
GO TO 70
ELSE IF( ICOMPZ.EQ.2 ) THEN
CALL CSTEQR( 'I', N, D, E, Z, LDZ, RWORK, INFO )
GO TO 70
ELSE
CALL CSTEQR( 'V', N, D, E, Z, LDZ, RWORK, INFO )
GO TO 70
END IF
END IF
*
* If COMPZ = 'I', we simply call SSTEDC instead.
*
IF( ICOMPZ.EQ.2 ) THEN
CALL SLASET( 'Full', N, N, ZERO, ONE, RWORK, N )
LL = N*N + 1
CALL SSTEDC( 'I', N, D, E, RWORK, N, RWORK( LL ), LRWORK-LL+1,
$ IWORK, LIWORK, INFO )
DO 20 J = 1, N
DO 10 I = 1, N
Z( I, J ) = RWORK( ( J-1 )*N+I )
10 CONTINUE
20 CONTINUE
GO TO 70
END IF
*
* From now on, only option left to be handled is COMPZ = 'V',
* i.e. ICOMPZ = 1.
*
* Scale.
*
NM1 = N - 1
ORGNRM = SLANST( 'M', N, D, E )
IF( ORGNRM.EQ.ZERO )
$ GO TO 70
*
EPS = SLAMCH( 'Epsilon' )
*
START = 1
*
* while ( START <= N )
*
30 CONTINUE
IF( START.LE.N ) THEN
*
* Let END be the position of the next subdiagonal entry such that
* E( END ) <= TINY or END = N if no such subdiagonal exists. The
* matrix identified by the elements between START and END
* constitutes an independent sub-problem.
*
END = START
40 CONTINUE
IF( END.LT.N ) THEN
TINY = EPS*SQRT( ABS( D( END ) ) )*SQRT( ABS( D( END+1 ) ) )
IF( ABS( E( END ) ).GT.TINY ) THEN
END = END + 1
GO TO 40
END IF
END IF
*
* (Sub) Problem determined. Compute its size and solve it.
*
M = END - START + 1
IF( M.GT.SMLSIZ ) THEN
INFO = SMLSIZ
*
* Scale.
*
ORGNRM = SLANST( 'M', M, D( START ), E( START ) )
CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
$ INFO )
CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
$ M-1, INFO )
*
CALL CLAED0( N, M, D( START ), E( START ), Z( 1, START ),
$ LDZ, WORK, N, RWORK, IWORK, INFO )
IF( INFO.GT.0 ) THEN
INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
$ MOD( INFO, ( M+1 ) ) + START - 1
GO TO 70
END IF
*
* Scale back.
*
CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
$ INFO )
*
ELSE
CALL SSTEQR( 'I', M, D( START ), E( START ), RWORK, M,
$ RWORK( M*M+1 ), INFO )
CALL CLACRM( N, M, Z( 1, START ), LDZ, RWORK, M, WORK, N,
$ RWORK( M*M+1 ) )
CALL CLACPY( 'A', N, M, WORK, N, Z( 1, START ), LDZ )
IF( INFO.GT.0 ) THEN
INFO = START*( N+1 ) + END
GO TO 70
END IF
END IF
*
START = END + 1
GO TO 30
END IF
*
* endwhile
*
* If the problem split any number of times, then the eigenvalues
* will not be properly ordered. Here we permute the eigenvalues
* (and the associated eigenvectors) into ascending order.
*
IF( M.NE.N ) THEN
*
* Use Selection Sort to minimize swaps of eigenvectors
*
DO 60 II = 2, N
I = II - 1
K = I
P = D( I )
DO 50 J = II, N
IF( D( J ).LT.P ) THEN
K = J
P = D( J )
END IF
50 CONTINUE
IF( K.NE.I ) THEN
D( K ) = D( I )
D( I ) = P
CALL CSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
END IF
60 CONTINUE
END IF
*
70 CONTINUE
IF( LWORK.GT.0 )
$ WORK( 1 ) = LWMIN
IF( LRWORK.GT.0 )
$ RWORK( 1 ) = LRWMIN
IF( LIWORK.GT.0 )
$ IWORK( 1 ) = LIWMIN
RETURN
*
* End of CSTEDC
*
END
|