File: cstedc.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (360 lines) | stat: -rw-r--r-- 11,935 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
      SUBROUTINE CSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
     $                   LRWORK, IWORK, LIWORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          COMPZ
      INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               D( * ), E( * ), RWORK( * )
      COMPLEX            WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  CSTEDC computes all eigenvalues and, optionally, eigenvectors of a
*  symmetric tridiagonal matrix using the divide and conquer method.
*  The eigenvectors of a full or band complex Hermitian matrix can also
*  be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this
*  matrix to tridiagonal form.
*
*  This code makes very mild assumptions about floating point
*  arithmetic. It will work on machines with a guard digit in
*  add/subtract, or on those binary machines without guard digits
*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
*  It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.  See SLAED3 for details.
*
*  Arguments
*  =========
*
*  COMPZ   (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only.
*          = 'I':  Compute eigenvectors of tridiagonal matrix also.
*          = 'V':  Compute eigenvectors of original Hermitian matrix
*                  also.  On entry, Z contains the unitary matrix used
*                  to reduce the original matrix to tridiagonal form.
*
*  N       (input) INTEGER
*          The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  D       (input/output) REAL array, dimension (N)
*          On entry, the diagonal elements of the tridiagonal matrix.
*          On exit, if INFO = 0, the eigenvalues in ascending order.
*
*  E       (input/output) REAL array, dimension (N-1)
*          On entry, the subdiagonal elements of the tridiagonal matrix.
*          On exit, E has been destroyed.
*
*  Z       (input/output) COMPLEX array, dimension (LDZ,N)
*          On entry, if COMPZ = 'V', then Z contains the unitary
*          matrix used in the reduction to tridiagonal form.
*          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
*          orthonormal eigenvectors of the original Hermitian matrix,
*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
*          of the symmetric tridiagonal matrix.
*          If  COMPZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1.
*          If eigenvectors are desired, then LDZ >= max(1,N).
*
*  WORK    (workspace/output) COMPLEX array, dimension (LWORK)
*          On exit, if LWORK > 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1.
*          If COMPZ = 'V' and N > 1, LWORK must be at least N*N.
*
*  RWORK   (workspace/output) REAL array,
*                                         dimension (LRWORK)
*          On exit, if LRWORK > 0, RWORK(1) returns the optimal LRWORK.
*
*  LRWORK  (input) INTEGER
*          The dimension of the array RWORK.
*          If COMPZ = 'N' or N <= 1, LRWORK must be at least 1.
*          If COMPZ = 'V' and N > 1, LRWORK must be at least
*                         1 + 3*N + 2*N*lg N + 3*N**2 ,
*                         where lg( N ) = smallest integer k such
*                         that 2**k >= N.
*          If COMPZ = 'I' and N > 1, LRWORK must be at least
*                         1 + 3*N + 2*N*lg N + 3*N**2 .
*
*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
*          On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.
*          If COMPZ = 'N' or N <= 1, LIWORK must be at least 1.
*          If COMPZ = 'V' or N > 1,  LIWORK must be at least
*                                    6 + 6*N + 5*N*lg N.
*          If COMPZ = 'I' or N > 1,  LIWORK must be at least
*                                    2 + 5*N .
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  The algorithm failed to compute an eigenvalue while
*                working on the submatrix lying in rows and columns
*                INFO/(N+1) through mod(INFO,N+1).
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            SMLSIZ
      PARAMETER          ( SMLSIZ = 25 )
      REAL               ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            END, I, ICOMPZ, II, J, K, LGN, LIWMIN, LL,
     $                   LRWMIN, LWMIN, M, NM1, START
      REAL               EPS, ORGNRM, P, TINY
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANST
      EXTERNAL           LSAME, SLAMCH, SLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLACPY, CLACRM, CLAED0, CSTEQR, CSWAP, SLASCL,
     $                   SLASET, SSTEDC, SSTEQR, SSTERF, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, LOG, MAX, MOD, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ICOMPZ = 0
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
         ICOMPZ = 2
      ELSE
         ICOMPZ = -1
      END IF
      IF( N.LE.1 .OR. ICOMPZ.LE.0 ) THEN
         LWMIN = 1
         LIWMIN = 1
         LRWMIN = 1
      ELSE
         LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
         IF( 2**LGN.LT.N )
     $      LGN = LGN + 1
         IF( 2**LGN.LT.N )
     $      LGN = LGN + 1
         IF( ICOMPZ.EQ.1 ) THEN
            LWMIN = N*N
            LRWMIN = 1 + 3*N + 2*N*LGN + 3*N**2
            LIWMIN = 6 + 6*N + 5*N*LGN
         ELSE IF( ICOMPZ.EQ.2 ) THEN
            LWMIN = 1
            LRWMIN = 1 + 3*N + 2*N*LGN + 3*N**2
            LIWMIN = 2 + 5*N
         END IF
      END IF
      IF( ICOMPZ.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
     $         N ) ) ) THEN
         INFO = -6
      ELSE IF( LWORK.LT.LWMIN ) THEN
         INFO = -8
      ELSE IF( LRWORK.LT.LRWMIN ) THEN
         INFO = -10
      ELSE IF( LIWORK.LT.LIWMIN ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CSTEDC', -INFO )
         GO TO 70
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   GO TO 70
      IF( N.EQ.1 ) THEN
         IF( ICOMPZ.NE.0 )
     $      Z( 1, 1 ) = ONE
         GO TO 70
      END IF
*
*     If the following conditional clause is removed, then the routine
*     will use the Divide and Conquer routine to compute only the
*     eigenvalues, which requires (3N + 3N**2) real workspace and
*     (2 + 5N + 2N lg(N)) integer workspace.
*     Since on many architectures SSTERF is much faster than any other
*     algorithm for finding eigenvalues only, it is used here
*     as the default.
*
*     If COMPZ = 'N', use SSTERF to compute the eigenvalues.
*
      IF( ICOMPZ.EQ.0 ) THEN
         CALL SSTERF( N, D, E, INFO )
         GO TO 70
      END IF
*
*     If N is smaller than the minimum divide size (SMLSIZ+1), then
*     solve the problem with another solver.
*
      IF( N.LE.SMLSIZ ) THEN
         IF( ICOMPZ.EQ.0 ) THEN
            CALL SSTERF( N, D, E, INFO )
            GO TO 70
         ELSE IF( ICOMPZ.EQ.2 ) THEN
            CALL CSTEQR( 'I', N, D, E, Z, LDZ, RWORK, INFO )
            GO TO 70
         ELSE
            CALL CSTEQR( 'V', N, D, E, Z, LDZ, RWORK, INFO )
            GO TO 70
         END IF
      END IF
*
*     If COMPZ = 'I', we simply call SSTEDC instead.
*
      IF( ICOMPZ.EQ.2 ) THEN
         CALL SLASET( 'Full', N, N, ZERO, ONE, RWORK, N )
         LL = N*N + 1
         CALL SSTEDC( 'I', N, D, E, RWORK, N, RWORK( LL ), LRWORK-LL+1,
     $                IWORK, LIWORK, INFO )
         DO 20 J = 1, N
            DO 10 I = 1, N
               Z( I, J ) = RWORK( ( J-1 )*N+I )
   10       CONTINUE
   20    CONTINUE
         GO TO 70
      END IF
*
*     From now on, only option left to be handled is COMPZ = 'V',
*     i.e. ICOMPZ = 1.
*
*     Scale.
*
      NM1 = N - 1
      ORGNRM = SLANST( 'M', N, D, E )
      IF( ORGNRM.EQ.ZERO )
     $   GO TO 70
*
      EPS = SLAMCH( 'Epsilon' )
*
      START = 1
*
*     while ( START <= N )
*
   30 CONTINUE
      IF( START.LE.N ) THEN
*
*     Let END be the position of the next subdiagonal entry such that
*     E( END ) <= TINY or END = N if no such subdiagonal exists.  The
*     matrix identified by the elements between START and END
*     constitutes an independent sub-problem.
*
         END = START
   40    CONTINUE
         IF( END.LT.N ) THEN
            TINY = EPS*SQRT( ABS( D( END ) ) )*SQRT( ABS( D( END+1 ) ) )
            IF( ABS( E( END ) ).GT.TINY ) THEN
               END = END + 1
               GO TO 40
            END IF
         END IF
*
*        (Sub) Problem determined.  Compute its size and solve it.
*
         M = END - START + 1
         IF( M.GT.SMLSIZ ) THEN
            INFO = SMLSIZ
*
*           Scale.
*
            ORGNRM = SLANST( 'M', M, D( START ), E( START ) )
            CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
     $                   INFO )
            CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
     $                   M-1, INFO )
*
            CALL CLAED0( N, M, D( START ), E( START ), Z( 1, START ),
     $                   LDZ, WORK, N, RWORK, IWORK, INFO )
            IF( INFO.GT.0 ) THEN
               INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
     $                MOD( INFO, ( M+1 ) ) + START - 1
               GO TO 70
            END IF
*
*           Scale back.
*
            CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
     $                   INFO )
*
         ELSE
            CALL SSTEQR( 'I', M, D( START ), E( START ), RWORK, M,
     $                   RWORK( M*M+1 ), INFO )
            CALL CLACRM( N, M, Z( 1, START ), LDZ, RWORK, M, WORK, N,
     $                   RWORK( M*M+1 ) )
            CALL CLACPY( 'A', N, M, WORK, N, Z( 1, START ), LDZ )
            IF( INFO.GT.0 ) THEN
               INFO = START*( N+1 ) + END
               GO TO 70
            END IF
         END IF
*
         START = END + 1
         GO TO 30
      END IF
*
*     endwhile
*
*     If the problem split any number of times, then the eigenvalues
*     will not be properly ordered.  Here we permute the eigenvalues
*     (and the associated eigenvectors) into ascending order.
*
      IF( M.NE.N ) THEN
*
*        Use Selection Sort to minimize swaps of eigenvectors
*
         DO 60 II = 2, N
            I = II - 1
            K = I
            P = D( I )
            DO 50 J = II, N
               IF( D( J ).LT.P ) THEN
                  K = J
                  P = D( J )
               END IF
   50       CONTINUE
            IF( K.NE.I ) THEN
               D( K ) = D( I )
               D( I ) = P
               CALL CSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
            END IF
   60    CONTINUE
      END IF
*
   70 CONTINUE
      IF( LWORK.GT.0 )
     $   WORK( 1 ) = LWMIN
      IF( LRWORK.GT.0 )
     $   RWORK( 1 ) = LRWMIN
      IF( LIWORK.GT.0 )
     $   IWORK( 1 ) = LIWMIN
      RETURN
*
*     End of CSTEDC
*
      END