File: dsbgv.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (189 lines) | stat: -rw-r--r-- 6,428 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
      SUBROUTINE DSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
     $                  LDZ, WORK, INFO )
*
*  -- LAPACK driver routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
     $                   WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  DSBGV computes all the eigenvalues, and optionally, the eigenvectors
*  of a real generalized symmetric-definite banded eigenproblem, of
*  the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
*  and banded, and B is also positive definite.
*
*  Arguments
*  =========
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangles of A and B are stored;
*          = 'L':  Lower triangles of A and B are stored.
*
*  N       (input) INTEGER
*          The order of the matrices A and B.  N >= 0.
*
*  KA      (input) INTEGER
*          The number of superdiagonals of the matrix A if UPLO = 'U',
*          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
*
*  KB      (input) INTEGER
*          The number of superdiagonals of the matrix B if UPLO = 'U',
*          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
*
*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
*          On entry, the upper or lower triangle of the symmetric band
*          matrix A, stored in the first ka+1 rows of the array.  The
*          j-th column of A is stored in the j-th column of the array AB
*          as follows:
*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
*
*          On exit, the contents of AB are destroyed.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= KA+1.
*
*  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
*          On entry, the upper or lower triangle of the symmetric band
*          matrix B, stored in the first kb+1 rows of the array.  The
*          j-th column of B is stored in the j-th column of the array BB
*          as follows:
*          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
*
*          On exit, the factor S from the split Cholesky factorization
*          B = S**T*S, as returned by DPBSTF.
*
*  LDBB    (input) INTEGER
*          The leading dimension of the array BB.  LDBB >= KB+1.
*
*  W       (output) DOUBLE PRECISION array, dimension (N)
*          If INFO = 0, the eigenvalues in ascending order.
*
*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
*          eigenvectors, with the i-th column of Z holding the
*          eigenvector associated with W(i). The eigenvectors are
*          normalized so that Z**T*B*Z = I.
*          If JOBZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', LDZ >= N.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, and i is:
*             <= N:  the algorithm failed to converge:
*                    i off-diagonal elements of an intermediate
*                    tridiagonal form did not converge to zero;
*             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
*                    returned INFO = i: B is not positive definite.
*                    The factorization of B could not be completed and
*                    no eigenvalues or eigenvectors were computed.
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            UPPER, WANTZ
      CHARACTER          VECT
      INTEGER            IINFO, INDE, INDWRK
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DPBSTF, DSBGST, DSBTRD, DSTEQR, DSTERF, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      UPPER = LSAME( UPLO, 'U' )
*
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( KA.LT.0 ) THEN
         INFO = -4
      ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.KA+1 ) THEN
         INFO = -7
      ELSE IF( LDBB.LT.KB+1 ) THEN
         INFO = -9
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSBGV ', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Form a split Cholesky factorization of B.
*
      CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = N + INFO
         RETURN
      END IF
*
*     Transform problem to standard eigenvalue problem.
*
      INDE = 1
      INDWRK = INDE + N
      CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
     $             WORK( INDWRK ), IINFO )
*
*     Reduce to tridiagonal form.
*
      IF( WANTZ ) THEN
         VECT = 'U'
      ELSE
         VECT = 'N'
      END IF
      CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
     $             WORK( INDWRK ), IINFO )
*
*     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEQR.
*
      IF( .NOT.WANTZ ) THEN
         CALL DSTERF( N, W, WORK( INDE ), INFO )
      ELSE
         CALL DSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
     $                INFO )
      END IF
      RETURN
*
*     End of DSBGV
*
      END