File: dstev.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (165 lines) | stat: -rw-r--r-- 4,767 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
      SUBROUTINE DSTEV( JOBZ, N, D, E, Z, LDZ, WORK, INFO )
*
*  -- LAPACK driver routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ
      INTEGER            INFO, LDZ, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  DSTEV computes all eigenvalues and, optionally, eigenvectors of a
*  real symmetric tridiagonal matrix A.
*
*  Arguments
*  =========
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  D       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the n diagonal elements of the tridiagonal matrix
*          A.
*          On exit, if INFO = 0, the eigenvalues in ascending order.
*
*  E       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the (n-1) subdiagonal elements of the tridiagonal
*          matrix A, stored in elements 1 to N-1 of E; E(N) need not
*          be set, but is used by the routine.
*          On exit, the contents of E are destroyed.
*
*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
*          eigenvectors of the matrix A, with the i-th column of Z
*          holding the eigenvector associated with D(i).
*          If JOBZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', LDZ >= max(1,N).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
*          If JOBZ = 'N', WORK is not referenced.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the algorithm failed to converge; i
*                off-diagonal elements of E did not converge to zero.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            WANTZ
      INTEGER            IMAX, ISCALE
      DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
     $                   TNRM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANST
      EXTERNAL           LSAME, DLAMCH, DLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL, DSTEQR, DSTERF, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
*
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -6
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSTEV ', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( WANTZ )
     $      Z( 1, 1 ) = ONE
         RETURN
      END IF
*
*     Get machine constants.
*
      SAFMIN = DLAMCH( 'Safe minimum' )
      EPS = DLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN = SQRT( SMLNUM )
      RMAX = SQRT( BIGNUM )
*
*     Scale matrix to allowable range, if necessary.
*
      ISCALE = 0
      TNRM = DLANST( 'M', N, D, E )
      IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
         ISCALE = 1
         SIGMA = RMIN / TNRM
      ELSE IF( TNRM.GT.RMAX ) THEN
         ISCALE = 1
         SIGMA = RMAX / TNRM
      END IF
      IF( ISCALE.EQ.1 ) THEN
         CALL DSCAL( N, SIGMA, D, 1 )
         CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
      END IF
*
*     For eigenvalues only, call DSTERF.  For eigenvalues and
*     eigenvectors, call DSTEQR.
*
      IF( .NOT.WANTZ ) THEN
         CALL DSTERF( N, D, E, INFO )
      ELSE
         CALL DSTEQR( 'I', N, D, E, Z, LDZ, WORK, INFO )
      END IF
*
*     If matrix was scaled, then rescale eigenvalues appropriately.
*
      IF( ISCALE.EQ.1 ) THEN
         IF( INFO.EQ.0 ) THEN
            IMAX = N
         ELSE
            IMAX = INFO - 1
         END IF
         CALL DSCAL( IMAX, ONE / SIGMA, D, 1 )
      END IF
*
      RETURN
*
*     End of DSTEV
*
      END