File: sgelq2.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (122 lines) | stat: -rw-r--r-- 3,365 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
      SUBROUTINE SGELQ2( M, N, A, LDA, TAU, WORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SGELQ2 computes an LQ factorization of a real m by n matrix A:
*  A = L * Q.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the m by n matrix A.
*          On exit, the elements on and below the diagonal of the array
*          contain the m by min(m,n) lower trapezoidal matrix L (L is
*          lower triangular if m <= n); the elements above the diagonal,
*          with the array TAU, represent the orthogonal matrix Q as a
*          product of elementary reflectors (see Further Details).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  TAU     (output) REAL array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors (see Further
*          Details).
*
*  WORK    (workspace) REAL array, dimension (M)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of elementary reflectors
*
*     Q = H(k) . . . H(2) H(1), where k = min(m,n).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
*  and tau in TAU(i).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, K
      REAL               AII
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLARF, SLARFG, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGELQ2', -INFO )
         RETURN
      END IF
*
      K = MIN( M, N )
*
      DO 10 I = 1, K
*
*        Generate elementary reflector H(i) to annihilate A(i,i+1:n)
*
         CALL SLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
     $                TAU( I ) )
         IF( I.LT.M ) THEN
*
*           Apply H(i) to A(i+1:m,i:n) from the right
*
            AII = A( I, I )
            A( I, I ) = ONE
            CALL SLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, TAU( I ),
     $                  A( I+1, I ), LDA, WORK )
            A( I, I ) = AII
         END IF
   10 CONTINUE
      RETURN
*
*     End of SGELQ2
*
      END