1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
SUBROUTINE SGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
$ INFO )
*
* -- LAPACK driver routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* November 14, 1994
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, P
* ..
* .. Array Arguments ..
REAL A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
$ X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* SGGGLM solves a general Gauss-Markov linear model (GLM) problem:
*
* minimize || y ||_2 subject to d = A*x + B*y
* x
*
* where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
* given N-vector. It is assumed that M <= N <= M+P, and
*
* rank(A) = M and rank( A B ) = N.
*
* Under these assumptions, the constrained equation is always
* consistent, and there is a unique solution x and a minimal 2-norm
* solution y, which is obtained using a generalized QR factorization
* of A and B.
*
* In particular, if matrix B is square nonsingular, then the problem
* GLM is equivalent to the following weighted linear least squares
* problem
*
* minimize || inv(B)*(d-A*x) ||_2
* x
*
* where inv(B) denotes the inverse of B.
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of rows of the matrices A and B. N >= 0.
*
* M (input) INTEGER
* The number of columns of the matrix A. 0 <= M <= N.
*
* P (input) INTEGER
* The number of columns of the matrix B. P >= N-M.
*
* A (input/output) REAL array, dimension (LDA,M)
* On entry, the N-by-M matrix A.
* On exit, A is destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* B (input/output) REAL array, dimension (LDB,P)
* On entry, the N-by-P matrix B.
* On exit, B is destroyed.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* D (input/output) REAL array, dimension (N)
* On entry, D is the left hand side of the GLM equation.
* On exit, D is destroyed.
*
* X (output) REAL array, dimension (M)
* Y (output) REAL array, dimension (P)
* On exit, X and Y are the solutions of the GLM problem.
*
* WORK (workspace/output) REAL array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N+M+P).
* For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
* where NB is an upper bound for the optimal blocksizes for
* SGEQRF, SGERQF, SORMQR and SORMRQ.
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* ===================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, LOPT, NP
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SGEMV, SGGQRF, SORMQR, SORMRQ, STRSV,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
NP = MIN( N, P )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
INFO = -2
ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LWORK.LT.MAX( 1, N+M+P ) ) THEN
INFO = -12
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGGGLM', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Compute the GQR factorization of matrices A and B:
*
* Q'*A = ( R11 ) M, Q'*B*Z' = ( T11 T12 ) M
* ( 0 ) N-M ( 0 T22 ) N-M
* M M+P-N N-M
*
* where R11 and T22 are upper triangular, and Q and Z are
* orthogonal.
*
CALL SGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
$ WORK( M+NP+1 ), LWORK-M-NP, INFO )
LOPT = WORK( M+NP+1 )
*
* Update left-hand-side vector d = Q'*d = ( d1 ) M
* ( d2 ) N-M
*
CALL SORMQR( 'Left', 'Transpose', N, 1, M, A, LDA, WORK, D,
$ MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
*
* Solve T22*y2 = d2 for y2
*
CALL STRSV( 'Upper', 'No transpose', 'Non unit', N-M,
$ B( M+1, M+P-N+1 ), LDB, D( M+1 ), 1 )
CALL SCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
*
* Set y1 = 0
*
DO 10 I = 1, M + P - N
Y( I ) = ZERO
10 CONTINUE
*
* Update d1 = d1 - T12*y2
*
CALL SGEMV( 'No transpose', M, N-M, -ONE, B( 1, M+P-N+1 ), LDB,
$ Y( M+P-N+1 ), 1, ONE, D, 1 )
*
* Solve triangular system: R11*x = d1
*
CALL STRSV( 'Upper', 'No Transpose', 'Non unit', M, A, LDA, D, 1 )
*
* Copy D to X
*
CALL SCOPY( M, D, 1, X, 1 )
*
* Backward transformation y = Z'*y
*
CALL SORMRQ( 'Left', 'Transpose', P, 1, NP,
$ B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
$ MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
*
RETURN
*
* End of SGGGLM
*
END
|