1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
REAL B( LDB, * ), D( * ), DL( * ), DU( * )
* ..
*
* Purpose
* =======
*
* SGTSV solves the equation
*
* A*X = B,
*
* where A is an N-by-N tridiagonal matrix, by Gaussian elimination with
* partial pivoting.
*
* Note that the equation A'*X = B may be solved by interchanging the
* order of the arguments DU and DL.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* DL (input/output) REAL array, dimension (N-1)
* On entry, DL must contain the (n-1) subdiagonal elements of
* A.
* On exit, DL is overwritten by the (n-2) elements of the
* second superdiagonal of the upper triangular matrix U from
* the LU factorization of A, in DL(1), ..., DL(n-2).
*
* D (input/output) REAL array, dimension (N)
* On entry, D must contain the diagonal elements of A.
* On exit, D is overwritten by the n diagonal elements of U.
*
* DU (input/output) REAL array, dimension (N-1)
* On entry, DU must contain the (n-1) superdiagonal elements
* of A.
* On exit, DU is overwritten by the (n-1) elements of the first
* superdiagonal of U.
*
* B (input/output) REAL array, dimension (LDB,NRHS)
* On entry, the N-by-NRHS right hand side matrix B.
* On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, U(i,i) is exactly zero, and the solution
* has not been computed. The factorization has not been
* completed unless i = N.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER J, K
REAL MULT, TEMP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Executable Statements ..
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( NRHS.LT.0 ) THEN
INFO = -2
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGTSV ', -INFO )
RETURN
END IF
*
IF( N.EQ.0 )
$ RETURN
*
DO 30 K = 1, N - 1
IF( DL( K ).EQ.ZERO ) THEN
*
* Subdiagonal is zero, no elimination is required.
*
IF( D( K ).EQ.ZERO ) THEN
*
* Diagonal is zero: set INFO = K and return; a unique
* solution can not be found.
*
INFO = K
RETURN
END IF
ELSE IF( ABS( D( K ) ).GE.ABS( DL( K ) ) ) THEN
*
* No row interchange required
*
MULT = DL( K ) / D( K )
D( K+1 ) = D( K+1 ) - MULT*DU( K )
DO 10 J = 1, NRHS
B( K+1, J ) = B( K+1, J ) - MULT*B( K, J )
10 CONTINUE
IF( K.LT.( N-1 ) )
$ DL( K ) = ZERO
ELSE
*
* Interchange rows K and K+1
*
MULT = D( K ) / DL( K )
D( K ) = DL( K )
TEMP = D( K+1 )
D( K+1 ) = DU( K ) - MULT*TEMP
IF( K.LT.( N-1 ) ) THEN
DL( K ) = DU( K+1 )
DU( K+1 ) = -MULT*DL( K )
END IF
DU( K ) = TEMP
DO 20 J = 1, NRHS
TEMP = B( K, J )
B( K, J ) = B( K+1, J )
B( K+1, J ) = TEMP - MULT*B( K+1, J )
20 CONTINUE
END IF
30 CONTINUE
IF( D( N ).EQ.ZERO ) THEN
INFO = N
RETURN
END IF
*
* Back solve with the matrix U from the factorization.
*
DO 50 J = 1, NRHS
B( N, J ) = B( N, J ) / D( N )
IF( N.GT.1 )
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
DO 40 K = N - 2, 1, -1
B( K, J ) = ( B( K, J )-DU( K )*B( K+1, J )-DL( K )*
$ B( K+2, J ) ) / D( K )
40 CONTINUE
50 CONTINUE
*
RETURN
*
* End of SGTSV
*
END
|