File: sgttrf.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (149 lines) | stat: -rw-r--r-- 4,468 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
      SUBROUTINE SGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               D( * ), DL( * ), DU( * ), DU2( * )
*     ..
*
*  Purpose
*  =======
*
*  SGTTRF computes an LU factorization of a real tridiagonal matrix A
*  using elimination with partial pivoting and row interchanges.
*
*  The factorization has the form
*     A = L * U
*  where L is a product of permutation and unit lower bidiagonal
*  matrices and U is upper triangular with nonzeros in only the main
*  diagonal and first two superdiagonals.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  DL      (input/output) REAL array, dimension (N-1)
*          On entry, DL must contain the (n-1) subdiagonal elements of
*          A.
*          On exit, DL is overwritten by the (n-1) multipliers that
*          define the matrix L from the LU factorization of A.
*
*  D       (input/output) REAL array, dimension (N)
*          On entry, D must contain the diagonal elements of A.
*          On exit, D is overwritten by the n diagonal elements of the
*          upper triangular matrix U from the LU factorization of A.
*
*  DU      (input/output) REAL array, dimension (N-1)
*          On entry, DU must contain the (n-1) superdiagonal elements
*          of A.
*          On exit, DU is overwritten by the (n-1) elements of the first
*          superdiagonal of U.
*
*  DU2     (output) REAL array, dimension (N-2)
*          On exit, DU2 is overwritten by the (n-2) elements of the
*          second superdiagonal of U.
*
*  IPIV    (output) INTEGER array, dimension (N)
*          The pivot indices; for 1 <= i <= n, row i of the matrix was
*          interchanged with row IPIV(i).  IPIV(i) will always be either
*          i or i+1; IPIV(i) = i indicates a row interchange was not
*          required.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
*                has been completed, but the factor U is exactly
*                singular, and division by zero will occur if it is used
*                to solve a system of equations.
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I
      REAL               FACT, TEMP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
         CALL XERBLA( 'SGTTRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Initialize IPIV(i) = i
*
      DO 10 I = 1, N
         IPIV( I ) = I
   10 CONTINUE
*
      DO 20 I = 1, N - 1
         IF( DL( I ).EQ.ZERO ) THEN
*
*           Subdiagonal is zero, no elimination is required.
*
            IF( D( I ).EQ.ZERO .AND. INFO.EQ.0 )
     $         INFO = I
            IF( I.LT.N-1 )
     $         DU2( I ) = ZERO
         ELSE IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
*
*           No row interchange required, eliminate DL(I)
*
            FACT = DL( I ) / D( I )
            DL( I ) = FACT
            D( I+1 ) = D( I+1 ) - FACT*DU( I )
            IF( I.LT.N-1 )
     $         DU2( I ) = ZERO
         ELSE
*
*           Interchange rows I and I+1, eliminate DL(I)
*
            FACT = D( I ) / DL( I )
            D( I ) = DL( I )
            DL( I ) = FACT
            TEMP = DU( I )
            DU( I ) = D( I+1 )
            D( I+1 ) = TEMP - FACT*D( I+1 )
            IF( I.LT.N-1 ) THEN
               DU2( I ) = DU( I+1 )
               DU( I+1 ) = -FACT*DU( I+1 )
            END IF
            IPIV( I ) = IPIV( I ) + 1
         END IF
   20 CONTINUE
      IF( D( N ).EQ.ZERO .AND. INFO.EQ.0 ) THEN
         INFO = N
         RETURN
      END IF
*
      RETURN
*
*     End of SGTTRF
*
      END