1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
SUBROUTINE SGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER INFO, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL D( * ), DL( * ), DU( * ), DU2( * )
* ..
*
* Purpose
* =======
*
* SGTTRF computes an LU factorization of a real tridiagonal matrix A
* using elimination with partial pivoting and row interchanges.
*
* The factorization has the form
* A = L * U
* where L is a product of permutation and unit lower bidiagonal
* matrices and U is upper triangular with nonzeros in only the main
* diagonal and first two superdiagonals.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* DL (input/output) REAL array, dimension (N-1)
* On entry, DL must contain the (n-1) subdiagonal elements of
* A.
* On exit, DL is overwritten by the (n-1) multipliers that
* define the matrix L from the LU factorization of A.
*
* D (input/output) REAL array, dimension (N)
* On entry, D must contain the diagonal elements of A.
* On exit, D is overwritten by the n diagonal elements of the
* upper triangular matrix U from the LU factorization of A.
*
* DU (input/output) REAL array, dimension (N-1)
* On entry, DU must contain the (n-1) superdiagonal elements
* of A.
* On exit, DU is overwritten by the (n-1) elements of the first
* superdiagonal of U.
*
* DU2 (output) REAL array, dimension (N-2)
* On exit, DU2 is overwritten by the (n-2) elements of the
* second superdiagonal of U.
*
* IPIV (output) INTEGER array, dimension (N)
* The pivot indices; for 1 <= i <= n, row i of the matrix was
* interchanged with row IPIV(i). IPIV(i) will always be either
* i or i+1; IPIV(i) = i indicates a row interchange was not
* required.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, U(i,i) is exactly zero. The factorization
* has been completed, but the factor U is exactly
* singular, and division by zero will occur if it is used
* to solve a system of equations.
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I
REAL FACT, TEMP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Executable Statements ..
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
CALL XERBLA( 'SGTTRF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Initialize IPIV(i) = i
*
DO 10 I = 1, N
IPIV( I ) = I
10 CONTINUE
*
DO 20 I = 1, N - 1
IF( DL( I ).EQ.ZERO ) THEN
*
* Subdiagonal is zero, no elimination is required.
*
IF( D( I ).EQ.ZERO .AND. INFO.EQ.0 )
$ INFO = I
IF( I.LT.N-1 )
$ DU2( I ) = ZERO
ELSE IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
*
* No row interchange required, eliminate DL(I)
*
FACT = DL( I ) / D( I )
DL( I ) = FACT
D( I+1 ) = D( I+1 ) - FACT*DU( I )
IF( I.LT.N-1 )
$ DU2( I ) = ZERO
ELSE
*
* Interchange rows I and I+1, eliminate DL(I)
*
FACT = D( I ) / DL( I )
D( I ) = DL( I )
DL( I ) = FACT
TEMP = DU( I )
DU( I ) = D( I+1 )
D( I+1 ) = TEMP - FACT*D( I+1 )
IF( I.LT.N-1 ) THEN
DU2( I ) = DU( I+1 )
DU( I+1 ) = -FACT*DU( I+1 )
END IF
IPIV( I ) = IPIV( I ) + 1
END IF
20 CONTINUE
IF( D( N ).EQ.ZERO .AND. INFO.EQ.0 ) THEN
INFO = N
RETURN
END IF
*
RETURN
*
* End of SGTTRF
*
END
|