File: slatzm.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (141 lines) | stat: -rw-r--r-- 4,080 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      SUBROUTINE SLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE
      INTEGER            INCV, LDC, M, N
      REAL               TAU
*     ..
*     .. Array Arguments ..
      REAL               C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SLATZM applies a Householder matrix generated by STZRQF to a matrix.
*
*  Let P = I - tau*u*u',   u = ( 1 ),
*                              ( v )
*  where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
*  SIDE = 'R'.
*
*  If SIDE equals 'L', let
*         C = [ C1 ] 1
*             [ C2 ] m-1
*               n
*  Then C is overwritten by P*C.
*
*  If SIDE equals 'R', let
*         C = [ C1, C2 ] m
*                1  n-1
*  Then C is overwritten by C*P.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': form P * C
*          = 'R': form C * P
*
*  M       (input) INTEGER
*          The number of rows of the matrix C.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C.
*
*  V       (input) REAL array, dimension
*                  (1 + (M-1)*abs(INCV)) if SIDE = 'L'
*                  (1 + (N-1)*abs(INCV)) if SIDE = 'R'
*          The vector v in the representation of P. V is not used
*          if TAU = 0.
*
*  INCV    (input) INTEGER
*          The increment between elements of v. INCV <> 0
*
*  TAU     (input) REAL
*          The value tau in the representation of P.
*
*  C1      (input/output) REAL array, dimension
*                         (LDC,N) if SIDE = 'L'
*                         (M,1)   if SIDE = 'R'
*          On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
*          if SIDE = 'R'.
*
*          On exit, the first row of P*C if SIDE = 'L', or the first
*          column of C*P if SIDE = 'R'.
*
*  C2      (input/output) REAL array, dimension
*                         (LDC, N)   if SIDE = 'L'
*                         (LDC, N-1) if SIDE = 'R'
*          On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
*          m x (n - 1) matrix C2 if SIDE = 'R'.
*
*          On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
*          if SIDE = 'R'.
*
*  LDC     (input) INTEGER
*          The leading dimension of the arrays C1 and C2. LDC >= (1,M).
*
*  WORK    (workspace) REAL array, dimension
*                      (N) if SIDE = 'L'
*                      (M) if SIDE = 'R'
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SCOPY, SGEMV, SGER
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
      IF( ( MIN( M, N ).EQ.0 ) .OR. ( TAU.EQ.ZERO ) )
     $   RETURN
*
      IF( LSAME( SIDE, 'L' ) ) THEN
*
*        w := C1 + v' * C2
*
         CALL SCOPY( N, C1, LDC, WORK, 1 )
         CALL SGEMV( 'Transpose', M-1, N, ONE, C2, LDC, V, INCV, ONE,
     $               WORK, 1 )
*
*        [ C1 ] := [ C1 ] - tau* [ 1 ] * w'
*        [ C2 ]    [ C2 ]        [ v ]
*
         CALL SAXPY( N, -TAU, WORK, 1, C1, LDC )
         CALL SGER( M-1, N, -TAU, V, INCV, WORK, 1, C2, LDC )
*
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*        w := C1 + C2 * v
*
         CALL SCOPY( M, C1, 1, WORK, 1 )
         CALL SGEMV( 'No transpose', M, N-1, ONE, C2, LDC, V, INCV, ONE,
     $               WORK, 1 )
*
*        [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v']
*
         CALL SAXPY( M, -TAU, WORK, 1, C1, 1 )
         CALL SGER( M, N-1, -TAU, WORK, 1, V, INCV, C2, LDC )
      END IF
*
      RETURN
*
*     End of SLATZM
*
      END