File: slauum.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (156 lines) | stat: -rw-r--r-- 4,853 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
      SUBROUTINE SLAUUM( UPLO, N, A, LDA, INFO )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  SLAUUM computes the product U * U' or L' * L, where the triangular
*  factor U or L is stored in the upper or lower triangular part of
*  the array A.
*
*  If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
*  overwriting the factor U in A.
*  If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
*  overwriting the factor L in A.
*
*  This is the blocked form of the algorithm, calling Level 3 BLAS.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the triangular factor stored in the array A
*          is upper or lower triangular:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the triangular factor U or L.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the triangular factor U or L.
*          On exit, if UPLO = 'U', the upper triangle of A is
*          overwritten with the upper triangle of the product U * U';
*          if UPLO = 'L', the lower triangle of A is overwritten with
*          the lower triangle of the product L' * L.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -k, the k-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, IB, NB
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMM, SLAUU2, SSYRK, STRMM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLAUUM', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Determine the block size for this environment.
*
      NB = ILAENV( 1, 'SLAUUM', UPLO, N, -1, -1, -1 )
*
      IF( NB.LE.1 .OR. NB.GE.N ) THEN
*
*        Use unblocked code
*
         CALL SLAUU2( UPLO, N, A, LDA, INFO )
      ELSE
*
*        Use blocked code
*
         IF( UPPER ) THEN
*
*           Compute the product U * U'.
*
            DO 10 I = 1, N, NB
               IB = MIN( NB, N-I+1 )
               CALL STRMM( 'Right', 'Upper', 'Transpose', 'Non-unit',
     $                     I-1, IB, ONE, A( I, I ), LDA, A( 1, I ),
     $                     LDA )
               CALL SLAUU2( 'Upper', IB, A( I, I ), LDA, INFO )
               IF( I+IB.LE.N ) THEN
                  CALL SGEMM( 'No transpose', 'Transpose', I-1, IB,
     $                        N-I-IB+1, ONE, A( 1, I+IB ), LDA,
     $                        A( I, I+IB ), LDA, ONE, A( 1, I ), LDA )
                  CALL SSYRK( 'Upper', 'No transpose', IB, N-I-IB+1,
     $                        ONE, A( I, I+IB ), LDA, ONE, A( I, I ),
     $                        LDA )
               END IF
   10       CONTINUE
         ELSE
*
*           Compute the product L' * L.
*
            DO 20 I = 1, N, NB
               IB = MIN( NB, N-I+1 )
               CALL STRMM( 'Left', 'Lower', 'Transpose', 'Non-unit', IB,
     $                     I-1, ONE, A( I, I ), LDA, A( I, 1 ), LDA )
               CALL SLAUU2( 'Lower', IB, A( I, I ), LDA, INFO )
               IF( I+IB.LE.N ) THEN
                  CALL SGEMM( 'Transpose', 'No transpose', IB, I-1,
     $                        N-I-IB+1, ONE, A( I+IB, I ), LDA,
     $                        A( I+IB, 1 ), LDA, ONE, A( I, 1 ), LDA )
                  CALL SSYRK( 'Lower', 'Transpose', IB, N-I-IB+1, ONE,
     $                        A( I+IB, I ), LDA, ONE, A( I, I ), LDA )
               END IF
   20       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of SLAUUM
*
      END