1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
SUBROUTINE SORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER VECT
INTEGER INFO, K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* Purpose
* =======
*
* SORGBR generates one of the real orthogonal matrices Q or P**T
* determined by SGEBRD when reducing a real matrix A to bidiagonal
* form: A = Q * B * P**T. Q and P**T are defined as products of
* elementary reflectors H(i) or G(i) respectively.
*
* If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
* is of order M:
* if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n
* columns of Q, where m >= n >= k;
* if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an
* M-by-M matrix.
*
* If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
* is of order N:
* if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m
* rows of P**T, where n >= m >= k;
* if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as
* an N-by-N matrix.
*
* Arguments
* =========
*
* VECT (input) CHARACTER*1
* Specifies whether the matrix Q or the matrix P**T is
* required, as defined in the transformation applied by SGEBRD:
* = 'Q': generate Q;
* = 'P': generate P**T.
*
* M (input) INTEGER
* The number of rows of the matrix Q or P**T to be returned.
* M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix Q or P**T to be returned.
* N >= 0.
* If VECT = 'Q', M >= N >= min(M,K);
* if VECT = 'P', N >= M >= min(N,K).
*
* K (input) INTEGER
* If VECT = 'Q', the number of columns in the original M-by-K
* matrix reduced by SGEBRD.
* If VECT = 'P', the number of rows in the original K-by-N
* matrix reduced by SGEBRD.
* K >= 0.
*
* A (input/output) REAL array, dimension (LDA,N)
* On entry, the vectors which define the elementary reflectors,
* as returned by SGEBRD.
* On exit, the M-by-N matrix Q or P**T.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* TAU (input) REAL array, dimension
* (min(M,K)) if VECT = 'Q'
* (min(N,K)) if VECT = 'P'
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i) or G(i), which determines Q or P**T, as
* returned by SGEBRD in its array argument TAUQ or TAUP.
*
* WORK (workspace/output) REAL array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,min(M,N)).
* For optimum performance LWORK >= min(M,N)*NB, where NB
* is the optimal blocksize.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL WANTQ
INTEGER I, IINFO, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL SORGLQ, SORGQR, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
WANTQ = LSAME( VECT, 'Q' )
IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
$ K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
$ MIN( N, K ) ) ) ) THEN
INFO = -3
ELSE IF( K.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LWORK.LT.MAX( 1, MIN( M, N ) ) ) THEN
INFO = -9
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SORGBR', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( WANTQ ) THEN
*
* Form Q, determined by a call to SGEBRD to reduce an m-by-k
* matrix
*
IF( M.GE.K ) THEN
*
* If m >= k, assume m >= n >= k
*
CALL SORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
ELSE
*
* If m < k, assume m = n
*
* Shift the vectors which define the elementary reflectors one
* column to the right, and set the first row and column of Q
* to those of the unit matrix
*
DO 20 J = M, 2, -1
A( 1, J ) = ZERO
DO 10 I = J + 1, M
A( I, J ) = A( I, J-1 )
10 CONTINUE
20 CONTINUE
A( 1, 1 ) = ONE
DO 30 I = 2, M
A( I, 1 ) = ZERO
30 CONTINUE
IF( M.GT.1 ) THEN
*
* Form Q(2:m,2:m)
*
CALL SORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
$ LWORK, IINFO )
END IF
END IF
ELSE
*
* Form P', determined by a call to SGEBRD to reduce a k-by-n
* matrix
*
IF( K.LT.N ) THEN
*
* If k < n, assume k <= m <= n
*
CALL SORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
ELSE
*
* If k >= n, assume m = n
*
* Shift the vectors which define the elementary reflectors one
* row downward, and set the first row and column of P' to
* those of the unit matrix
*
A( 1, 1 ) = ONE
DO 40 I = 2, N
A( I, 1 ) = ZERO
40 CONTINUE
DO 60 J = 2, N
DO 50 I = J - 1, 2, -1
A( I, J ) = A( I-1, J )
50 CONTINUE
A( 1, J ) = ZERO
60 CONTINUE
IF( N.GT.1 ) THEN
*
* Form P'(2:n,2:n)
*
CALL SORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
$ LWORK, IINFO )
END IF
END IF
END IF
RETURN
*
* End of SORGBR
*
END
|