File: sormtr.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (191 lines) | stat: -rw-r--r-- 5,614 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
      SUBROUTINE SORMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
     $                   WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS, UPLO
      INTEGER            INFO, LDA, LDC, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), C( LDC, * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  SORMTR overwrites the general real M-by-N matrix C with
*
*                  SIDE = 'L'     SIDE = 'R'
*  TRANS = 'N':      Q * C          C * Q
*  TRANS = 'T':      Q**T * C       C * Q**T
*
*  where Q is a real orthogonal matrix of order nq, with nq = m if
*  SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
*  nq-1 elementary reflectors, as returned by SSYTRD:
*
*  if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
*
*  if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': apply Q or Q**T from the Left;
*          = 'R': apply Q or Q**T from the Right.
*
*  UPLO    (input) CHARACTER*1
*          = 'U': Upper triangle of A contains elementary reflectors
*                 from SSYTRD;
*          = 'L': Lower triangle of A contains elementary reflectors
*                 from SSYTRD.
*
*  TRANS   (input) CHARACTER*1
*          = 'N':  No transpose, apply Q;
*          = 'T':  Transpose, apply Q**T.
*
*  M       (input) INTEGER
*          The number of rows of the matrix C. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C. N >= 0.
*
*  A       (input) REAL array, dimension
*                               (LDA,M) if SIDE = 'L'
*                               (LDA,N) if SIDE = 'R'
*          The vectors which define the elementary reflectors, as
*          returned by SSYTRD.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.
*          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
*
*  TAU     (input) REAL array, dimension
*                               (M-1) if SIDE = 'L'
*                               (N-1) if SIDE = 'R'
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by SSYTRD.
*
*  C       (input/output) REAL array, dimension (LDC,N)
*          On entry, the M-by-N matrix C.
*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M).
*
*  WORK    (workspace/output) REAL array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If SIDE = 'L', LWORK >= max(1,N);
*          if SIDE = 'R', LWORK >= max(1,M).
*          For optimum performance LWORK >= N*NB if SIDE = 'L', and
*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*          blocksize.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LEFT, UPPER
      INTEGER            I1, I2, IINFO, MI, NI, NQ, NW
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SORMQL, SORMQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LEFT = LSAME( SIDE, 'L' )
      UPPER = LSAME( UPLO, 'U' )
*
*     NQ is the order of Q and NW is the minimum dimension of WORK
*
      IF( LEFT ) THEN
         NQ = M
         NW = N
      ELSE
         NQ = N
         NW = M
      END IF
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
     $          THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
         INFO = -7
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -10
      ELSE IF( LWORK.LT.MAX( 1, NW ) ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORMTR', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 .OR. NQ.EQ.1 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      IF( LEFT ) THEN
         MI = M - 1
         NI = N
      ELSE
         MI = M
         NI = N - 1
      END IF
*
      IF( UPPER ) THEN
*
*        Q was determined by a call to SSYTRD with UPLO = 'U'
*
         CALL SORMQL( SIDE, TRANS, MI, NI, NQ-1, A( 1, 2 ), LDA, TAU, C,
     $                LDC, WORK, LWORK, IINFO )
      ELSE
*
*        Q was determined by a call to SSYTRD with UPLO = 'L'
*
         IF( LEFT ) THEN
            I1 = 2
            I2 = 1
         ELSE
            I1 = 1
            I2 = 2
         END IF
         CALL SORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
     $                C( I1, I2 ), LDC, WORK, LWORK, IINFO )
      END IF
      RETURN
*
*     End of SORMTR
*
      END