1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
SUBROUTINE SPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
$ RCOND, FERR, BERR, WORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER FACT
INTEGER INFO, LDB, LDX, N, NRHS
REAL RCOND
* ..
* .. Array Arguments ..
REAL B( LDB, * ), BERR( * ), D( * ), DF( * ),
$ E( * ), EF( * ), FERR( * ), WORK( * ),
$ X( LDX, * )
* ..
*
* Purpose
* =======
*
* SPTSVX uses the factorization A = L*D*L**T to compute the solution
* to a real system of linear equations A*X = B, where A is an N-by-N
* symmetric positive definite tridiagonal matrix and X and B are
* N-by-NRHS matrices.
*
* Error bounds on the solution and a condition estimate are also
* provided.
*
* Description
* ===========
*
* The following steps are performed:
*
* 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
* is a unit lower bidiagonal matrix and D is diagonal. The
* factorization can also be regarded as having the form
* A = U**T*D*U.
*
* 2. The factored form of A is used to compute the condition number
* of the matrix A. If the reciprocal of the condition number is
* less than machine precision, steps 3 and 4 are skipped.
*
* 3. The system of equations is solved for X using the factored form
* of A.
*
* 4. Iterative refinement is applied to improve the computed solution
* matrix and calculate error bounds and backward error estimates
* for it.
*
* Arguments
* =========
*
* FACT (input) CHARACTER*1
* Specifies whether or not the factored form of A has been
* supplied on entry.
* = 'F': On entry, DF and EF contain the factored form of A.
* D, E, DF, and EF will not be modified.
* = 'N': The matrix A will be copied to DF and EF and
* factored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrices B and X. NRHS >= 0.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the tridiagonal matrix A.
*
* E (input) REAL array, dimension (N-1)
* The (n-1) subdiagonal elements of the tridiagonal matrix A.
*
* DF (input or output) REAL array, dimension (N)
* If FACT = 'F', then DF is an input argument and on entry
* contains the n diagonal elements of the diagonal matrix D
* from the L*D*L**T factorization of A.
* If FACT = 'N', then DF is an output argument and on exit
* contains the n diagonal elements of the diagonal matrix D
* from the L*D*L**T factorization of A.
*
* EF (input or output) REAL array, dimension (N-1)
* If FACT = 'F', then EF is an input argument and on entry
* contains the (n-1) subdiagonal elements of the unit
* bidiagonal factor L from the L*D*L**T factorization of A.
* If FACT = 'N', then EF is an output argument and on exit
* contains the (n-1) subdiagonal elements of the unit
* bidiagonal factor L from the L*D*L**T factorization of A.
*
* B (input) REAL array, dimension (LDB,NRHS)
* The N-by-NRHS right hand side matrix B.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* X (output) REAL array, dimension (LDX,NRHS)
* If INFO = 0, the N-by-NRHS solution matrix X.
*
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(1,N).
*
* RCOND (output) REAL
* The reciprocal condition number of the matrix A. If RCOND
* is less than the machine precision (in particular, if
* RCOND = 0), the matrix is singular to working precision.
* This condition is indicated by a return code of INFO > 0,
* and the solution and error bounds are not computed.
*
* FERR (output) REAL array, dimension (NRHS)
* The forward error bound for each solution vector
* X(j) (the j-th column of the solution matrix X).
* If XTRUE is the true solution corresponding to X(j), FERR(j)
* is an estimated upper bound for the magnitude of the largest
* element in (X(j) - XTRUE) divided by the magnitude of the
* largest element in X(j).
*
* BERR (output) REAL array, dimension (NRHS)
* The componentwise relative backward error of each solution
* vector X(j) (i.e., the smallest relative change in any
* element of A or B that makes X(j) an exact solution).
*
* WORK (workspace) REAL array, dimension (2*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, and i is
* <= N the leading minor of order i of A is not
* positive definite, so the factorization could not be
* completed unless i = N, and the solution and error
* bounds could not be computed.
* = N+1 RCOND is less than machine precision. The
* factorization has been completed, but the matrix is
* singular to working precision, and the solution and
* error bounds have not been computed.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL NOFACT
REAL ANORM
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANST
EXTERNAL LSAME, SLAMCH, SLANST
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SLACPY, SPTCON, SPTRFS, SPTTRF, SPTTRS,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NOFACT = LSAME( FACT, 'N' )
IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SPTSVX', -INFO )
RETURN
END IF
*
IF( NOFACT ) THEN
*
* Compute the L*D*L' (or U'*D*U) factorization of A.
*
CALL SCOPY( N, D, 1, DF, 1 )
IF( N.GT.1 )
$ CALL SCOPY( N-1, E, 1, EF, 1 )
CALL SPTTRF( N, DF, EF, INFO )
*
* Return if INFO is non-zero.
*
IF( INFO.NE.0 ) THEN
IF( INFO.GT.0 )
$ RCOND = ZERO
RETURN
END IF
END IF
*
* Compute the norm of the matrix A.
*
ANORM = SLANST( '1', N, D, E )
*
* Compute the reciprocal of the condition number of A.
*
CALL SPTCON( N, DF, EF, ANORM, RCOND, WORK, INFO )
*
* Return if the matrix is singular to working precision.
*
IF( RCOND.LT.SLAMCH( 'Epsilon' ) ) THEN
INFO = N + 1
RETURN
END IF
*
* Compute the solution vectors X.
*
CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
CALL SPTTRS( N, NRHS, DF, EF, X, LDX, INFO )
*
* Use iterative refinement to improve the computed solutions and
* compute error bounds and backward error estimates for them.
*
CALL SPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
$ WORK, INFO )
*
RETURN
*
* End of SPTSVX
*
END
|