File: ssbtrd.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (418 lines) | stat: -rw-r--r-- 13,221 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
      SUBROUTINE SSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ,
     $                   WORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO, VECT
      INTEGER            INFO, KD, LDAB, LDQ, N
*     ..
*     .. Array Arguments ..
      REAL               AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SSBTRD reduces a real symmetric band matrix A to symmetric
*  tridiagonal form T by an orthogonal similarity transformation:
*  Q**T * A * Q = T.
*
*  Arguments
*  =========
*
*  VECT    (input) CHARACTER*1
*          = 'N':  do not form Q;
*          = 'V':  form Q;
*          = 'U':  update a matrix X, by forming X*Q.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  KD      (input) INTEGER
*          The number of superdiagonals of the matrix A if UPLO = 'U',
*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
*
*  AB      (input/output) REAL array, dimension (LDAB,N)
*          On entry, the upper or lower triangle of the symmetric band
*          matrix A, stored in the first KD+1 rows of the array.  The
*          j-th column of A is stored in the j-th column of the array AB
*          as follows:
*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*          On exit, the diagonal elements of AB are overwritten by the
*          diagonal elements of the tridiagonal matrix T; if KD > 0, the
*          elements on the first superdiagonal (if UPLO = 'U') or the
*          first subdiagonal (if UPLO = 'L') are overwritten by the
*          off-diagonal elements of T; the rest of AB is overwritten by
*          values generated during the reduction.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= KD+1.
*
*  D       (output) REAL array, dimension (N)
*          The diagonal elements of the tridiagonal matrix T.
*
*  E       (output) REAL array, dimension (N-1)
*          The off-diagonal elements of the tridiagonal matrix T:
*          E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
*
*  Q       (input/output) REAL array, dimension (LDQ,N)
*          On entry, if VECT = 'U', then Q must contain an N-by-N
*          matrix X; if VECT = 'N' or 'V', then Q need not be set.
*
*          On exit:
*          if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
*          if VECT = 'U', Q contains the product X*Q;
*          if VECT = 'N', the array Q is not referenced.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.
*          LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
*
*  WORK    (workspace) REAL array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            INITQ, UPPER, WANTQ
      INTEGER            I, INCA, J, J1, J2, K, KD1, KDN, L, NR, NRT
      REAL               TEMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLAR2V, SLARGV, SLARTG, SLARTV, SLASET, SROT,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INITQ = LSAME( VECT, 'V' )
      WANTQ = INITQ .OR. LSAME( VECT, 'U' )
      UPPER = LSAME( UPLO, 'U' )
      KD1 = KD + 1
      INFO = 0
      IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( KD.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDAB.LT.KD1 ) THEN
         INFO = -6
      ELSE IF( LDQ.LT.MAX( 1, N ) .AND. WANTQ ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSBTRD', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Initialize Q to the unit matrix, if needed
*
      IF( INITQ )
     $   CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
*
*     Wherever possible, plane rotations are generated and applied in
*     vector operations of length NR over the index set J1:J2:KD1.
*
*     The cosines and sines of the plane rotations are stored in the
*     arrays D and WORK.
*
      INCA = KD1*LDAB
      KDN = MIN( N-1, KD )
      IF( UPPER ) THEN
*
         IF( KD.GT.1 ) THEN
*
*           Reduce to tridiagonal form, working with upper triangle
*
            NR = 0
            J1 = KDN + 2
            J2 = 1
*
            DO 60 I = 1, N - 2
*
*              Reduce i-th row of matrix to tridiagonal form
*
               DO 50 K = KDN + 1, 2, -1
                  J1 = J1 + KDN
                  J2 = J2 + KDN
*
                  IF( NR.GT.0 ) THEN
*
*                    generate plane rotations to annihilate nonzero
*                    elements which have been created outside the band
*
                     CALL SLARGV( NR, AB( 1, J1-1 ), INCA, WORK( J1 ),
     $                            KD1, D( J1 ), KD1 )
*
*                    apply rotations from the right
*
                     DO 10 L = 1, KD - 1
                        CALL SLARTV( NR, AB( L+1, J1-1 ), INCA,
     $                               AB( L, J1 ), INCA, D( J1 ),
     $                               WORK( J1 ), KD1 )
   10                CONTINUE
                  END IF
*
                  IF( K.GT.2 ) THEN
                     IF( K.LE.N-I+1 ) THEN
*
*                       generate plane rotation to annihilate a(i,i+k-1)
*                       within the band
*
                        CALL SLARTG( AB( KD-K+3, I+K-2 ),
     $                               AB( KD-K+2, I+K-1 ), D( I+K-1 ),
     $                               WORK( I+K-1 ), TEMP )
                        AB( KD-K+3, I+K-2 ) = TEMP
*
*                       apply rotation from the right
*
                        CALL SROT( K-3, AB( KD-K+4, I+K-2 ), 1,
     $                             AB( KD-K+3, I+K-1 ), 1, D( I+K-1 ),
     $                             WORK( I+K-1 ) )
                     END IF
                     NR = NR + 1
                     J1 = J1 - KDN - 1
                  END IF
*
*                 apply plane rotations from both sides to diagonal
*                 blocks
*
                  IF( NR.GT.0 )
     $               CALL SLAR2V( NR, AB( KD1, J1-1 ), AB( KD1, J1 ),
     $                            AB( KD, J1 ), INCA, D( J1 ),
     $                            WORK( J1 ), KD1 )
*
*                 apply plane rotations from the left
*
                  DO 20 L = 1, KD - 1
                     IF( J2+L.GT.N ) THEN
                        NRT = NR - 1
                     ELSE
                        NRT = NR
                     END IF
                     IF( NRT.GT.0 )
     $                  CALL SLARTV( NRT, AB( KD-L, J1+L ), INCA,
     $                               AB( KD-L+1, J1+L ), INCA, D( J1 ),
     $                               WORK( J1 ), KD1 )
   20             CONTINUE
*
                  IF( WANTQ ) THEN
*
*                    accumulate product of plane rotations in Q
*
                     DO 30 J = J1, J2, KD1
                        CALL SROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1,
     $                             D( J ), WORK( J ) )
   30                CONTINUE
                  END IF
*
                  IF( J2+KDN.GT.N ) THEN
*
*                    adjust J2 to keep within the bounds of the matrix
*
                     NR = NR - 1
                     J2 = J2 - KDN - 1
                  END IF
*
                  DO 40 J = J1, J2, KD1
*
*                    create nonzero element a(j-1,j+kd) outside the band
*                    and store it in WORK
*
                     WORK( J+KD ) = WORK( J )*AB( 1, J+KD )
                     AB( 1, J+KD ) = D( J )*AB( 1, J+KD )
   40             CONTINUE
   50          CONTINUE
   60       CONTINUE
         END IF
*
         IF( KD.GT.0 ) THEN
*
*           copy off-diagonal elements to E
*
            DO 70 I = 1, N - 1
               E( I ) = AB( KD, I+1 )
   70       CONTINUE
         ELSE
*
*           set E to zero if original matrix was diagonal
*
            DO 80 I = 1, N - 1
               E( I ) = ZERO
   80       CONTINUE
         END IF
*
*        copy diagonal elements to D
*
         DO 90 I = 1, N
            D( I ) = AB( KD1, I )
   90    CONTINUE
*
      ELSE
*
         IF( KD.GT.1 ) THEN
*
*           Reduce to tridiagonal form, working with lower triangle
*
            NR = 0
            J1 = KDN + 2
            J2 = 1
*
            DO 150 I = 1, N - 2
*
*              Reduce i-th column of matrix to tridiagonal form
*
               DO 140 K = KDN + 1, 2, -1
                  J1 = J1 + KDN
                  J2 = J2 + KDN
*
                  IF( NR.GT.0 ) THEN
*
*                    generate plane rotations to annihilate nonzero
*                    elements which have been created outside the band
*
                     CALL SLARGV( NR, AB( KD1, J1-KD1 ), INCA,
     $                            WORK( J1 ), KD1, D( J1 ), KD1 )
*
*                    apply plane rotations from one side
*
                     DO 100 L = 1, KD - 1
                        CALL SLARTV( NR, AB( KD1-L, J1-KD1+L ), INCA,
     $                               AB( KD1-L+1, J1-KD1+L ), INCA,
     $                               D( J1 ), WORK( J1 ), KD1 )
  100                CONTINUE
                  END IF
*
                  IF( K.GT.2 ) THEN
                     IF( K.LE.N-I+1 ) THEN
*
*                       generate plane rotation to annihilate a(i+k-1,i)
*                       within the band
*
                        CALL SLARTG( AB( K-1, I ), AB( K, I ),
     $                               D( I+K-1 ), WORK( I+K-1 ), TEMP )
                        AB( K-1, I ) = TEMP
*
*                       apply rotation from the left
*
                        CALL SROT( K-3, AB( K-2, I+1 ), LDAB-1,
     $                             AB( K-1, I+1 ), LDAB-1, D( I+K-1 ),
     $                             WORK( I+K-1 ) )
                     END IF
                     NR = NR + 1
                     J1 = J1 - KDN - 1
                  END IF
*
*                 apply plane rotations from both sides to diagonal
*                 blocks
*
                  IF( NR.GT.0 )
     $               CALL SLAR2V( NR, AB( 1, J1-1 ), AB( 1, J1 ),
     $                            AB( 2, J1-1 ), INCA, D( J1 ),
     $                            WORK( J1 ), KD1 )
*
*                 apply plane rotations from the right
*
                  DO 110 L = 1, KD - 1
                     IF( J2+L.GT.N ) THEN
                        NRT = NR - 1
                     ELSE
                        NRT = NR
                     END IF
                     IF( NRT.GT.0 )
     $                  CALL SLARTV( NRT, AB( L+2, J1-1 ), INCA,
     $                               AB( L+1, J1 ), INCA, D( J1 ),
     $                               WORK( J1 ), KD1 )
  110             CONTINUE
*
                  IF( WANTQ ) THEN
*
*                    accumulate product of plane rotations in Q
*
                     DO 120 J = J1, J2, KD1
                        CALL SROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1,
     $                             D( J ), WORK( J ) )
  120                CONTINUE
                  END IF
*
                  IF( J2+KDN.GT.N ) THEN
*
*                    adjust J2 to keep within the bounds of the matrix
*
                     NR = NR - 1
                     J2 = J2 - KDN - 1
                  END IF
*
                  DO 130 J = J1, J2, KD1
*
*                    create nonzero element a(j+kd,j-1) outside the
*                    band and store it in WORK
*
                     WORK( J+KD ) = WORK( J )*AB( KD1, J )
                     AB( KD1, J ) = D( J )*AB( KD1, J )
  130             CONTINUE
  140          CONTINUE
  150       CONTINUE
         END IF
*
         IF( KD.GT.0 ) THEN
*
*           copy off-diagonal elements to E
*
            DO 160 I = 1, N - 1
               E( I ) = AB( 2, I )
  160       CONTINUE
         ELSE
*
*           set E to zero if original matrix was diagonal
*
            DO 170 I = 1, N - 1
               E( I ) = ZERO
  170       CONTINUE
         END IF
*
*        copy diagonal elements to D
*
         DO 180 I = 1, N
            D( I ) = AB( 1, I )
  180    CONTINUE
      END IF
*
      RETURN
*
*     End of SSBTRD
*
      END