1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
SUBROUTINE SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
$ IWORK, LIWORK, INFO )
*
*
* -- LAPACK driver routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER INFO, LDZ, LIWORK, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL AP( * ), W( * ), WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* SSPEVD computes all the eigenvalues and, optionally, eigenvectors
* of a real symmetric matrix A in packed storage. If eigenvectors are
* desired, it uses a divide and conquer algorithm.
*
* The divide and conquer algorithm makes very mild assumptions about
* floating point arithmetic. It will work on machines with a guard
* digit in add/subtract, or on those binary machines without guard
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
* Cray-2. It could conceivably fail on hexadecimal or decimal machines
* without guard digits, but we know of none.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* AP (input/output) REAL array, dimension (N*(N+1)/2)
* On entry, the upper or lower triangle of the symmetric matrix
* A, packed columnwise in a linear array. The j-th column of A
* is stored in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*
* On exit, AP is overwritten by values generated during the
* reduction to tridiagonal form. If UPLO = 'U', the diagonal
* and first superdiagonal of the tridiagonal matrix T overwrite
* the corresponding elements of A, and if UPLO = 'L', the
* diagonal and first subdiagonal of T overwrite the
* corresponding elements of A.
*
* W (output) REAL array, dimension (N)
* If INFO = 0, the eigenvalues in ascending order.
*
* Z (output) REAL array, dimension (LDZ, N)
* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
* eigenvectors of the matrix A, with the i-th column of Z
* holding the eigenvector associated with W(i).
* If JOBZ = 'N', then Z is not referenced.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* WORK (workspace/output) REAL array,
* dimension (LWORK)
* On exit, if LWORK > 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* If N <= 1, LWORK must be at least 1.
* If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
* If JOBZ = 'V' and N > 1, LWORK must be at least
* ( 1 + 5*N + 2*N*lg N + 2*N**2 ),
* where lg( N ) = smallest integer k such
* that 2**k >= N.
*
* IWORK (workspace/output) INTEGER array, dimension (LIWORK)
* On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK.
* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
* If JOBZ = 'V' and N > 1, LIWORK must be at least 2 + 5*N.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: if INFO = i, the algorithm failed to converge; i
* off-diagonal elements of an intermediate tridiagonal
* form did not converge to zero.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL WANTZ
INTEGER IINFO, INDE, INDTAU, INDWRK, ISCALE, LGN,
$ LIWMIN, LLWORK, LWMIN
REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
$ SMLNUM
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANSP
EXTERNAL LSAME, SLAMCH, SLANSP
* ..
* .. External Subroutines ..
EXTERNAL SOPMTR, SSCAL, SSPTRD, SSTEDC, SSTERF, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC INT, LOG, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
*
INFO = 0
IF( N.LE.1 ) THEN
LGN = 0
LIWMIN = 1
LWMIN = 1
ELSE
LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IF( WANTZ ) THEN
LIWMIN = 2 + 5*N
LWMIN = 1 + 5*N + 2*N*LGN + 2*N**2
ELSE
LIWMIN = 1
LWMIN = 2*N
END IF
END IF
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) )
$ THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
INFO = -7
ELSE IF( LWORK.LT.LWMIN ) THEN
INFO = -9
ELSE IF( LIWORK.LT.LIWMIN ) THEN
INFO = -11
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSPEVD ', -INFO )
GO TO 10
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ GO TO 10
*
IF( N.EQ.1 ) THEN
W( 1 ) = AP( 1 )
IF( WANTZ )
$ Z( 1, 1 ) = ONE
GO TO 10
END IF
*
* Get machine constants.
*
SAFMIN = SLAMCH( 'Safe minimum' )
EPS = SLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = SQRT( BIGNUM )
*
* Scale matrix to allowable range, if necessary.
*
ANRM = SLANSP( 'M', UPLO, N, AP, WORK )
ISCALE = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
IF( ISCALE.EQ.1 ) THEN
CALL SSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
END IF
*
* Call SSPTRD to reduce symmetric packed matrix to tridiagonal form.
*
INDE = 1
INDTAU = INDE + N
CALL SSPTRD( UPLO, N, AP, W, WORK( INDE ), WORK( INDTAU ), IINFO )
*
* For eigenvalues only, call SSTERF. For eigenvectors, first call
* SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
* tridiagonal matrix, then call SOPMTR to multiply it by the
* Householder transformations represented in AP.
*
IF( .NOT.WANTZ ) THEN
CALL SSTERF( N, W, WORK( INDE ), INFO )
ELSE
INDWRK = INDTAU + N
LLWORK = LWORK - INDWRK + 1
CALL SSTEDC( 'I', N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
$ LLWORK, IWORK, LIWORK, INFO )
CALL SOPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
$ WORK( INDWRK ), IINFO )
END IF
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
IF( ISCALE.EQ.1 )
$ CALL SSCAL( N, ONE / SIGMA, W, 1 )
*
10 CONTINUE
IF( LWORK.GT.0 )
$ WORK( 1 ) = LWMIN
IF( LIWORK.GT.0 )
$ IWORK( 1 ) = LIWMIN
RETURN
*
* End of SSPEVD
*
END
|