1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
SUBROUTINE SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, ITYPE, N
* ..
* .. Array Arguments ..
REAL AP( * ), BP( * )
* ..
*
* Purpose
* =======
*
* SSPGST reduces a real symmetric-definite generalized eigenproblem
* to standard form, using packed storage.
*
* If ITYPE = 1, the problem is A*x = lambda*B*x,
* and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
*
* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
* B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
*
* B must have been previously factorized as U**T*U or L*L**T by SPPTRF.
*
* Arguments
* =========
*
* ITYPE (input) INTEGER
* = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
* = 2 or 3: compute U*A*U**T or L**T*A*L.
*
* UPLO (input) CHARACTER
* = 'U': Upper triangle of A is stored and B is factored as
* U**T*U;
* = 'L': Lower triangle of A is stored and B is factored as
* L*L**T.
*
* N (input) INTEGER
* The order of the matrices A and B. N >= 0.
*
* AP (input/output) REAL array, dimension (N*(N+1)/2)
* On entry, the upper or lower triangle of the symmetric matrix
* A, packed columnwise in a linear array. The j-th column of A
* is stored in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
* On exit, if INFO = 0, the transformed matrix, stored in the
* same format as A.
*
* BP (input) REAL array, dimension (N*(N+1)/2)
* The triangular factor from the Cholesky factorization of B,
* stored in the same format as A, as returned by SPPTRF.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, HALF
PARAMETER ( ONE = 1.0, HALF = 0.5 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER J, J1, J1J1, JJ, K, K1, K1K1, KK
REAL AJJ, AKK, BJJ, BKK, CT
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SSCAL, SSPMV, SSPR2, STPMV, STPSV,
$ XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SDOT
EXTERNAL LSAME, SDOT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSPGST', -INFO )
RETURN
END IF
*
IF( ITYPE.EQ.1 ) THEN
IF( UPPER ) THEN
*
* Compute inv(U')*A*inv(U)
*
* J1 and JJ are the indices of A(1,j) and A(j,j)
*
JJ = 0
DO 10 J = 1, N
J1 = JJ + 1
JJ = JJ + J
*
* Compute the j-th column of the upper triangle of A
*
BJJ = BP( JJ )
CALL STPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
$ AP( J1 ), 1 )
CALL SSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
$ AP( J1 ), 1 )
CALL SSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
AP( JJ ) = ( AP( JJ )-SDOT( J-1, AP( J1 ), 1, BP( J1 ),
$ 1 ) ) / BJJ
10 CONTINUE
ELSE
*
* Compute inv(L)*A*inv(L')
*
* KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
*
KK = 1
DO 20 K = 1, N
K1K1 = KK + N - K + 1
*
* Update the lower triangle of A(k:n,k:n)
*
AKK = AP( KK )
BKK = BP( KK )
AKK = AKK / BKK**2
AP( KK ) = AKK
IF( K.LT.N ) THEN
CALL SSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
CT = -HALF*AKK
CALL SAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
CALL SSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
$ BP( KK+1 ), 1, AP( K1K1 ) )
CALL SAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
CALL STPSV( UPLO, 'No transpose', 'Non-unit', N-K,
$ BP( K1K1 ), AP( KK+1 ), 1 )
END IF
KK = K1K1
20 CONTINUE
END IF
ELSE
IF( UPPER ) THEN
*
* Compute U*A*U'
*
* K1 and KK are the indices of A(1,k) and A(k,k)
*
KK = 0
DO 30 K = 1, N
K1 = KK + 1
KK = KK + K
*
* Update the upper triangle of A(1:k,1:k)
*
AKK = AP( KK )
BKK = BP( KK )
CALL STPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
$ AP( K1 ), 1 )
CT = HALF*AKK
CALL SAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
CALL SSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
$ AP )
CALL SAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
CALL SSCAL( K-1, BKK, AP( K1 ), 1 )
AP( KK ) = AKK*BKK**2
30 CONTINUE
ELSE
*
* Compute L'*A*L
*
* JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
*
JJ = 1
DO 40 J = 1, N
J1J1 = JJ + N - J + 1
*
* Compute the j-th column of the lower triangle of A
*
AJJ = AP( JJ )
BJJ = BP( JJ )
AP( JJ ) = AJJ*BJJ + SDOT( N-J, AP( JJ+1 ), 1,
$ BP( JJ+1 ), 1 )
CALL SSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
CALL SSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
$ ONE, AP( JJ+1 ), 1 )
CALL STPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
$ BP( JJ ), AP( JJ ), 1 )
JJ = J1J1
40 CONTINUE
END IF
END IF
RETURN
*
* End of SSPGST
*
END
|