File: ssyevd.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (245 lines) | stat: -rw-r--r-- 8,146 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
      SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
     $                   LIWORK, INFO )
*
*  -- LAPACK driver routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            INFO, LDA, LIWORK, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               A( LDA, * ), W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SSYEVD computes all eigenvalues and, optionally, eigenvectors of a
*  real symmetric matrix A. If eigenvectors are desired, it uses a
*  divide and conquer algorithm.
*
*  The divide and conquer algorithm makes very mild assumptions about
*  floating point arithmetic. It will work on machines with a guard
*  digit in add/subtract, or on those binary machines without guard
*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
*  Cray-2. It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.
*
*  Arguments
*  =========
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA, N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the
*          leading N-by-N upper triangular part of A contains the
*          upper triangular part of the matrix A.  If UPLO = 'L',
*          the leading N-by-N lower triangular part of A contains
*          the lower triangular part of the matrix A.
*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*          orthonormal eigenvectors of the matrix A.
*          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
*          or the upper triangle (if UPLO='U') of A, including the
*          diagonal, is destroyed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  W       (output) REAL array, dimension (N)
*          If INFO = 0, the eigenvalues in ascending order.
*
*  WORK    (workspace/output) REAL array,
*                                         dimension (LWORK)
*          On exit, if LWORK > 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If N <= 1,               LWORK must be at least 1.
*          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
*          If JOBZ = 'V' and N > 1, LWORK must be at least
*                         1 + 5*N + 2*N*lg N + 3*N**2,
*                         where lg( N ) = smallest integer k such
*                                         that 2**k >= N.
*
*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
*          On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.
*          If N <= 1,                LIWORK must be at least 1.
*          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
*          If JOBZ  = 'V' and N > 1, LIWORK must be at least 2 + 5*N.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the algorithm failed to converge; i
*                off-diagonal elements of an intermediate tridiagonal
*                form did not converge to zero.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
*     ..
*     .. Local Scalars ..
*
      LOGICAL            LOWER, WANTZ
      INTEGER            IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
     $                   LGN, LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
      REAL               ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
     $                   SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANSY
      EXTERNAL           LSAME, SLAMCH, SLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLACPY, SLASCL, SORMTR, SSCAL, SSTEDC, SSTERF,
     $                   SSYTRD, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          INT, LOG, MAX, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      LOWER = LSAME( UPLO, 'L' )
*
      INFO = 0
      IF( N.LE.1 ) THEN
         LGN = 0
         LIWMIN = 1
         LWMIN = 1
         LOPT = LWMIN
         LIOPT = LIWMIN
      ELSE
         LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
         IF( 2**LGN.LT.N )
     $      LGN = LGN + 1
         IF( 2**LGN.LT.N )
     $      LGN = LGN + 1
         IF( WANTZ ) THEN
            LIWMIN = 2 + 5*N
            LWMIN = 1 + 5*N + 2*N*LGN + 3*N**2
         ELSE
            LIWMIN = 1
            LWMIN = 2*N + 1
         END IF
         LOPT = LWMIN
         LIOPT = LIWMIN
      END IF
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LWORK.LT.LWMIN ) THEN
         INFO = -8
      ELSE IF( LIWORK.LT.LIWMIN ) THEN
         INFO = -10
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSYEVD ', -INFO )
         GO TO 10
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   GO TO 10
*
      IF( N.EQ.1 ) THEN
         W( 1 ) = A( 1, 1 )
         IF( WANTZ )
     $      A( 1, 1 ) = ONE
         GO TO 10
      END IF
*
*     Get machine constants.
*
      SAFMIN = SLAMCH( 'Safe minimum' )
      EPS = SLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN = SQRT( SMLNUM )
      RMAX = SQRT( BIGNUM )
*
*     Scale matrix to allowable range, if necessary.
*
      ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
      ISCALE = 0
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
         ISCALE = 1
         SIGMA = RMIN / ANRM
      ELSE IF( ANRM.GT.RMAX ) THEN
         ISCALE = 1
         SIGMA = RMAX / ANRM
      END IF
      IF( ISCALE.EQ.1 )
     $   CALL SLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
*
*     Call SSYTRD to reduce symmetric matrix to tridiagonal form.
*
      INDE = 1
      INDTAU = INDE + N
      INDWRK = INDTAU + N
      LLWORK = LWORK - INDWRK + 1
      INDWK2 = INDWRK + N*N
      LLWRK2 = LWORK - INDWK2 + 1
*
      CALL SSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
     $             WORK( INDWRK ), LLWORK, IINFO )
      LOPT = 2*N + WORK( INDWRK )
*
*     For eigenvalues only, call SSTERF.  For eigenvectors, first call
*     SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
*     tridiagonal matrix, then call SORMTR to multiply it by the
*     Householder transformations stored in A.
*
      IF( .NOT.WANTZ ) THEN
         CALL SSTERF( N, W, WORK( INDE ), INFO )
      ELSE
         CALL SSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
     $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
         CALL SORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
     $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
         CALL SLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
         LOPT = MAX( LOPT, 1+5*N+2*N*LGN+3*N**2 )
      END IF
*
*     If matrix was scaled, then rescale eigenvalues appropriately.
*
      IF( ISCALE.EQ.1 )
     $   CALL SSCAL( N, ONE / SIGMA, W, 1 )
   10 CONTINUE
      IF( LWORK.GT.0 )
     $   WORK( 1 ) = LOPT
      IF( LIWORK.GT.0 )
     $   IWORK( 1 ) = LIOPT
      RETURN
*
*     End of SSYEVD
*
      END