1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
$ LIWORK, INFO )
*
* -- LAPACK driver routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER INFO, LDA, LIWORK, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL A( LDA, * ), W( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* SSYEVD computes all eigenvalues and, optionally, eigenvectors of a
* real symmetric matrix A. If eigenvectors are desired, it uses a
* divide and conquer algorithm.
*
* The divide and conquer algorithm makes very mild assumptions about
* floating point arithmetic. It will work on machines with a guard
* digit in add/subtract, or on those binary machines without guard
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
* Cray-2. It could conceivably fail on hexadecimal or decimal machines
* without guard digits, but we know of none.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) REAL array, dimension (LDA, N)
* On entry, the symmetric matrix A. If UPLO = 'U', the
* leading N-by-N upper triangular part of A contains the
* upper triangular part of the matrix A. If UPLO = 'L',
* the leading N-by-N lower triangular part of A contains
* the lower triangular part of the matrix A.
* On exit, if JOBZ = 'V', then if INFO = 0, A contains the
* orthonormal eigenvectors of the matrix A.
* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
* or the upper triangle (if UPLO='U') of A, including the
* diagonal, is destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* W (output) REAL array, dimension (N)
* If INFO = 0, the eigenvalues in ascending order.
*
* WORK (workspace/output) REAL array,
* dimension (LWORK)
* On exit, if LWORK > 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* If N <= 1, LWORK must be at least 1.
* If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
* If JOBZ = 'V' and N > 1, LWORK must be at least
* 1 + 5*N + 2*N*lg N + 3*N**2,
* where lg( N ) = smallest integer k such
* that 2**k >= N.
*
* IWORK (workspace/output) INTEGER array, dimension (LIWORK)
* On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK.
* If N <= 1, LIWORK must be at least 1.
* If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
* If JOBZ = 'V' and N > 1, LIWORK must be at least 2 + 5*N.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the algorithm failed to converge; i
* off-diagonal elements of an intermediate tridiagonal
* form did not converge to zero.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
* ..
* .. Local Scalars ..
*
LOGICAL LOWER, WANTZ
INTEGER IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
$ LGN, LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
$ SMLNUM
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANSY
EXTERNAL LSAME, SLAMCH, SLANSY
* ..
* .. External Subroutines ..
EXTERNAL SLACPY, SLASCL, SORMTR, SSCAL, SSTEDC, SSTERF,
$ SSYTRD, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC INT, LOG, MAX, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
LOWER = LSAME( UPLO, 'L' )
*
INFO = 0
IF( N.LE.1 ) THEN
LGN = 0
LIWMIN = 1
LWMIN = 1
LOPT = LWMIN
LIOPT = LIWMIN
ELSE
LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IF( WANTZ ) THEN
LIWMIN = 2 + 5*N
LWMIN = 1 + 5*N + 2*N*LGN + 3*N**2
ELSE
LIWMIN = 1
LWMIN = 2*N + 1
END IF
LOPT = LWMIN
LIOPT = LIWMIN
END IF
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LWORK.LT.LWMIN ) THEN
INFO = -8
ELSE IF( LIWORK.LT.LIWMIN ) THEN
INFO = -10
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSYEVD ', -INFO )
GO TO 10
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ GO TO 10
*
IF( N.EQ.1 ) THEN
W( 1 ) = A( 1, 1 )
IF( WANTZ )
$ A( 1, 1 ) = ONE
GO TO 10
END IF
*
* Get machine constants.
*
SAFMIN = SLAMCH( 'Safe minimum' )
EPS = SLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = SQRT( BIGNUM )
*
* Scale matrix to allowable range, if necessary.
*
ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
ISCALE = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
IF( ISCALE.EQ.1 )
$ CALL SLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
*
* Call SSYTRD to reduce symmetric matrix to tridiagonal form.
*
INDE = 1
INDTAU = INDE + N
INDWRK = INDTAU + N
LLWORK = LWORK - INDWRK + 1
INDWK2 = INDWRK + N*N
LLWRK2 = LWORK - INDWK2 + 1
*
CALL SSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
$ WORK( INDWRK ), LLWORK, IINFO )
LOPT = 2*N + WORK( INDWRK )
*
* For eigenvalues only, call SSTERF. For eigenvectors, first call
* SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
* tridiagonal matrix, then call SORMTR to multiply it by the
* Householder transformations stored in A.
*
IF( .NOT.WANTZ ) THEN
CALL SSTERF( N, W, WORK( INDE ), INFO )
ELSE
CALL SSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
$ WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
CALL SORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
$ WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
CALL SLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
LOPT = MAX( LOPT, 1+5*N+2*N*LGN+3*N**2 )
END IF
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
IF( ISCALE.EQ.1 )
$ CALL SSCAL( N, ONE / SIGMA, W, 1 )
10 CONTINUE
IF( LWORK.GT.0 )
$ WORK( 1 ) = LOPT
IF( LIWORK.GT.0 )
$ IWORK( 1 ) = LIOPT
RETURN
*
* End of SSYEVD
*
END
|