1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
SUBROUTINE STRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
$ LDX, FERR, BERR, WORK, IWORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, LDA, LDB, LDX, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
$ WORK( * ), X( LDX, * )
* ..
*
* Purpose
* =======
*
* STRRFS provides error bounds and backward error estimates for the
* solution to a system of linear equations with a triangular
* coefficient matrix.
*
* The solution matrix X must be computed by STRTRS or some other
* means before entering this routine. STRRFS does not do iterative
* refinement because doing so cannot improve the backward error.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': A is upper triangular;
* = 'L': A is lower triangular.
*
* TRANS (input) CHARACTER*1
* Specifies the form of the system of equations:
* = 'N': A * X = B (No transpose)
* = 'T': A**T * X = B (Transpose)
* = 'C': A**H * X = B (Conjugate transpose = Transpose)
*
* DIAG (input) CHARACTER*1
* = 'N': A is non-unit triangular;
* = 'U': A is unit triangular.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrices B and X. NRHS >= 0.
*
* A (input) REAL array, dimension (LDA,N)
* The triangular matrix A. If UPLO = 'U', the leading N-by-N
* upper triangular part of the array A contains the upper
* triangular matrix, and the strictly lower triangular part of
* A is not referenced. If UPLO = 'L', the leading N-by-N lower
* triangular part of the array A contains the lower triangular
* matrix, and the strictly upper triangular part of A is not
* referenced. If DIAG = 'U', the diagonal elements of A are
* also not referenced and are assumed to be 1.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* B (input) REAL array, dimension (LDB,NRHS)
* The right hand side matrix B.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* X (input) REAL array, dimension (LDX,NRHS)
* The solution matrix X.
*
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(1,N).
*
* FERR (output) REAL array, dimension (NRHS)
* The estimated forward error bound for each solution vector
* X(j) (the j-th column of the solution matrix X).
* If XTRUE is the true solution corresponding to X(j), FERR(j)
* is an estimated upper bound for the magnitude of the largest
* element in (X(j) - XTRUE) divided by the magnitude of the
* largest element in X(j). The estimate is as reliable as
* the estimate for RCOND, and is almost always a slight
* overestimate of the true error.
*
* BERR (output) REAL array, dimension (NRHS)
* The componentwise relative backward error of each solution
* vector X(j) (i.e., the smallest relative change in
* any element of A or B that makes X(j) an exact solution).
*
* WORK (workspace) REAL array, dimension (3*N)
*
* IWORK (workspace) INTEGER array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN, NOUNIT, UPPER
CHARACTER TRANST
INTEGER I, J, K, KASE, NZ
REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SCOPY, SLACON, STRMV, STRSV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH
EXTERNAL LSAME, SLAMCH
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOTRAN = LSAME( TRANS, 'N' )
NOUNIT = LSAME( DIAG, 'N' )
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( NRHS.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'STRRFS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
DO 10 J = 1, NRHS
FERR( J ) = ZERO
BERR( J ) = ZERO
10 CONTINUE
RETURN
END IF
*
IF( NOTRAN ) THEN
TRANST = 'T'
ELSE
TRANST = 'N'
END IF
*
* NZ = maximum number of nonzero elements in each row of A, plus 1
*
NZ = N + 1
EPS = SLAMCH( 'Epsilon' )
SAFMIN = SLAMCH( 'Safe minimum' )
SAFE1 = NZ*SAFMIN
SAFE2 = SAFE1 / EPS
*
* Do for each right hand side
*
DO 250 J = 1, NRHS
*
* Compute residual R = B - op(A) * X,
* where op(A) = A or A', depending on TRANS.
*
CALL SCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
CALL STRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK( N+1 ), 1 )
CALL SAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
*
* Compute componentwise relative backward error from formula
*
* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
*
* where abs(Z) is the componentwise absolute value of the matrix
* or vector Z. If the i-th component of the denominator is less
* than SAFE2, then SAFE1 is added to the i-th components of the
* numerator and denominator before dividing.
*
DO 20 I = 1, N
WORK( I ) = ABS( B( I, J ) )
20 CONTINUE
*
IF( NOTRAN ) THEN
*
* Compute abs(A)*abs(X) + abs(B).
*
IF( UPPER ) THEN
IF( NOUNIT ) THEN
DO 40 K = 1, N
XK = ABS( X( K, J ) )
DO 30 I = 1, K
WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
30 CONTINUE
40 CONTINUE
ELSE
DO 60 K = 1, N
XK = ABS( X( K, J ) )
DO 50 I = 1, K - 1
WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
50 CONTINUE
WORK( K ) = WORK( K ) + XK
60 CONTINUE
END IF
ELSE
IF( NOUNIT ) THEN
DO 80 K = 1, N
XK = ABS( X( K, J ) )
DO 70 I = K, N
WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
70 CONTINUE
80 CONTINUE
ELSE
DO 100 K = 1, N
XK = ABS( X( K, J ) )
DO 90 I = K + 1, N
WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
90 CONTINUE
WORK( K ) = WORK( K ) + XK
100 CONTINUE
END IF
END IF
ELSE
*
* Compute abs(A')*abs(X) + abs(B).
*
IF( UPPER ) THEN
IF( NOUNIT ) THEN
DO 120 K = 1, N
S = ZERO
DO 110 I = 1, K
S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
110 CONTINUE
WORK( K ) = WORK( K ) + S
120 CONTINUE
ELSE
DO 140 K = 1, N
S = ABS( X( K, J ) )
DO 130 I = 1, K - 1
S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
130 CONTINUE
WORK( K ) = WORK( K ) + S
140 CONTINUE
END IF
ELSE
IF( NOUNIT ) THEN
DO 160 K = 1, N
S = ZERO
DO 150 I = K, N
S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
150 CONTINUE
WORK( K ) = WORK( K ) + S
160 CONTINUE
ELSE
DO 180 K = 1, N
S = ABS( X( K, J ) )
DO 170 I = K + 1, N
S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
170 CONTINUE
WORK( K ) = WORK( K ) + S
180 CONTINUE
END IF
END IF
END IF
S = ZERO
DO 190 I = 1, N
IF( WORK( I ).GT.SAFE2 ) THEN
S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
ELSE
S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
$ ( WORK( I )+SAFE1 ) )
END IF
190 CONTINUE
BERR( J ) = S
*
* Bound error from formula
*
* norm(X - XTRUE) / norm(X) .le. FERR =
* norm( abs(inv(op(A)))*
* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
*
* where
* norm(Z) is the magnitude of the largest component of Z
* inv(op(A)) is the inverse of op(A)
* abs(Z) is the componentwise absolute value of the matrix or
* vector Z
* NZ is the maximum number of nonzeros in any row of A, plus 1
* EPS is machine epsilon
*
* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
* is incremented by SAFE1 if the i-th component of
* abs(op(A))*abs(X) + abs(B) is less than SAFE2.
*
* Use SLACON to estimate the infinity-norm of the matrix
* inv(op(A)) * diag(W),
* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
*
DO 200 I = 1, N
IF( WORK( I ).GT.SAFE2 ) THEN
WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
ELSE
WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
END IF
200 CONTINUE
*
KASE = 0
210 CONTINUE
CALL SLACON( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
$ KASE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.1 ) THEN
*
* Multiply by diag(W)*inv(op(A)').
*
CALL STRSV( UPLO, TRANST, DIAG, N, A, LDA, WORK( N+1 ),
$ 1 )
DO 220 I = 1, N
WORK( N+I ) = WORK( I )*WORK( N+I )
220 CONTINUE
ELSE
*
* Multiply by inv(op(A))*diag(W).
*
DO 230 I = 1, N
WORK( N+I ) = WORK( I )*WORK( N+I )
230 CONTINUE
CALL STRSV( UPLO, TRANS, DIAG, N, A, LDA, WORK( N+1 ),
$ 1 )
END IF
GO TO 210
END IF
*
* Normalize error.
*
LSTRES = ZERO
DO 240 I = 1, N
LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
240 CONTINUE
IF( LSTRES.NE.ZERO )
$ FERR( J ) = FERR( J ) / LSTRES
*
250 CONTINUE
*
RETURN
*
* End of STRRFS
*
END
|