1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
|
SUBROUTINE ZGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
$ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
*
* -- LAPACK driver routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER JOBVL, JOBVR
INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
$ BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* ZGEGV computes for a pair of N-by-N complex nonsymmetric matrices A
* and B, the generalized eigenvalues (alpha, beta), and optionally,
* the left and/or right generalized eigenvectors (VL and VR).
*
* A generalized eigenvalue for a pair of matrices (A,B) is, roughly
* speaking, a scalar w or a ratio alpha/beta = w, such that A - w*B
* is singular. It is usually represented as the pair (alpha,beta),
* as there is a reasonable interpretation for beta=0, and even for
* both being zero. A good beginning reference is the book, "Matrix
* Computations", by G. Golub & C. van Loan (Johns Hopkins U. Press)
*
* A right generalized eigenvector corresponding to a generalized
* eigenvalue w for a pair of matrices (A,B) is a vector r such
* that (A - w B) r = 0 . A left generalized eigenvector is a vector
* l such that l**H * (A - w B) = 0, where l**H is the
* conjugate-transpose of l.
*
* Note: this routine performs "full balancing" on A and B -- see
* "Further Details", below.
*
* Arguments
* =========
*
* JOBVL (input) CHARACTER*1
* = 'N': do not compute the left generalized eigenvectors;
* = 'V': compute the left generalized eigenvectors.
*
* JOBVR (input) CHARACTER*1
* = 'N': do not compute the right generalized eigenvectors;
* = 'V': compute the right generalized eigenvectors.
*
* N (input) INTEGER
* The order of the matrices A, B, VL, and VR. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA, N)
* On entry, the first of the pair of matrices whose
* generalized eigenvalues and (optionally) generalized
* eigenvectors are to be computed.
* On exit, the contents will have been destroyed. (For a
* description of the contents of A on exit, see "Further
* Details", below.)
*
* LDA (input) INTEGER
* The leading dimension of A. LDA >= max(1,N).
*
* B (input/output) COMPLEX*16 array, dimension (LDB, N)
* On entry, the second of the pair of matrices whose
* generalized eigenvalues and (optionally) generalized
* eigenvectors are to be computed.
* On exit, the contents will have been destroyed. (For a
* description of the contents of B on exit, see "Further
* Details", below.)
*
* LDB (input) INTEGER
* The leading dimension of B. LDB >= max(1,N).
*
* ALPHA (output) COMPLEX*16 array, dimension (N)
* BETA (output) COMPLEX*16 array, dimension (N)
* On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
* generalized eigenvalues.
*
* Note: the quotients ALPHA(j)/BETA(j) may easily over- or
* underflow, and BETA(j) may even be zero. Thus, the user
* should avoid naively computing the ratio alpha/beta.
* However, ALPHA will be always less than and usually
* comparable with norm(A) in magnitude, and BETA always less
* than and usually comparable with norm(B).
*
* VL (output) COMPLEX*16 array, dimension (LDVL,N)
* If JOBVL = 'V', the left generalized eigenvectors. (See
* "Purpose", above.)
* Each eigenvector will be scaled so the largest component
* will have abs(real part) + abs(imag. part) = 1, *except*
* that for eigenvalues with alpha=beta=0, a zero vector will
* be returned as the corresponding eigenvector.
* Not referenced if JOBVL = 'N'.
*
* LDVL (input) INTEGER
* The leading dimension of the matrix VL. LDVL >= 1, and
* if JOBVL = 'V', LDVL >= N.
*
* VR (output) COMPLEX*16 array, dimension (LDVR,N)
* If JOBVL = 'V', the right generalized eigenvectors. (See
* "Purpose", above.)
* Each eigenvector will be scaled so the largest component
* will have abs(real part) + abs(imag. part) = 1, *except*
* that for eigenvalues with alpha=beta=0, a zero vector will
* be returned as the corresponding eigenvector.
* Not referenced if JOBVR = 'N'.
*
* LDVR (input) INTEGER
* The leading dimension of the matrix VR. LDVR >= 1, and
* if JOBVR = 'V', LDVR >= N.
*
* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,2*N).
* For good performance, LWORK must generally be larger.
* To compute the optimal value of LWORK, call ILAENV to get
* blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.) Then compute:
* NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR;
* The optimal LWORK is MAX( 2*N, N*(NB+1) ).
*
* RWORK (workspace/output) DOUBLE PRECISION array, dimension (8*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value.
* =1,...,N:
* The QZ iteration failed. No eigenvectors have been
* calculated, but ALPHA(j) and BETA(j) should be
* correct for j=INFO+1,...,N.
* > N: errors that usually indicate LAPACK problems:
* =N+1: error return from ZGGBAL
* =N+2: error return from ZGEQRF
* =N+3: error return from ZUNMQR
* =N+4: error return from ZUNGQR
* =N+5: error return from ZGGHRD
* =N+6: error return from ZHGEQZ (other than failed
* iteration)
* =N+7: error return from ZTGEVC
* =N+8: error return from ZGGBAK (computing VL)
* =N+9: error return from ZGGBAK (computing VR)
* =N+10: error return from ZLASCL (various calls)
*
* Further Details
* ===============
*
* Balancing
* ---------
*
* This driver calls ZGGBAL to both permute and scale rows and columns
* of A and B. The permutations PL and PR are chosen so that PL*A*PR
* and PL*B*R will be upper triangular except for the diagonal blocks
* A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
* possible. The diagonal scaling matrices DL and DR are chosen so
* that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
* one (except for the elements that start out zero.)
*
* After the eigenvalues and eigenvectors of the balanced matrices
* have been computed, ZGGBAK transforms the eigenvectors back to what
* they would have been (in perfect arithmetic) if they had not been
* balanced.
*
* Contents of A and B on Exit
* -------- -- - --- - -- ----
*
* If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
* both), then on exit the arrays A and B will contain the complex Schur
* form[*] of the "balanced" versions of A and B. If no eigenvectors
* are computed, then only the diagonal blocks will be correct.
*
* [*] In other words, upper triangular form.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
$ CONE = ( 1.0D0, 0.0D0 ) )
* ..
* .. Local Scalars ..
LOGICAL ILIMIT, ILV, ILVL, ILVR
CHARACTER CHTEMP
INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
$ IN, IRIGHT, IROWS, IRWORK, ITAU, IWORK, JC, JR,
$ LWKMIN, LWKOPT
DOUBLE PRECISION ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
$ BNRM1, BNRM2, EPS, SAFMAX, SAFMIN, SALFAI,
$ SALFAR, SBETA, SCALE, TEMP
COMPLEX*16 X
* ..
* .. Local Arrays ..
LOGICAL LDUMMA( 1 )
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD, ZHGEQZ,
$ ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR, ZUNMQR
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL LSAME, DLAMCH, ZLANGE
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DIMAG, INT, MAX
* ..
* .. Statement Functions ..
DOUBLE PRECISION ABS1
* ..
* .. Statement Function definitions ..
ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
* ..
* .. Executable Statements ..
*
* Decode the input arguments
*
IF( LSAME( JOBVL, 'N' ) ) THEN
IJOBVL = 1
ILVL = .FALSE.
ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
IJOBVL = 2
ILVL = .TRUE.
ELSE
IJOBVL = -1
ILVL = .FALSE.
END IF
*
IF( LSAME( JOBVR, 'N' ) ) THEN
IJOBVR = 1
ILVR = .FALSE.
ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
IJOBVR = 2
ILVR = .TRUE.
ELSE
IJOBVR = -1
ILVR = .FALSE.
END IF
ILV = ILVL .OR. ILVR
*
* Test the input arguments
*
LWKMIN = MAX( 2*N, 1 )
LWKOPT = LWKMIN
INFO = 0
IF( IJOBVL.LE.0 ) THEN
INFO = -1
ELSE IF( IJOBVR.LE.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
INFO = -11
ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
INFO = -13
ELSE IF( LWORK.LT.LWKMIN ) THEN
INFO = -15
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGEGV ', -INFO )
RETURN
END IF
*
* Quick return if possible
*
WORK( 1 ) = LWKOPT
IF( N.EQ.0 )
$ RETURN
*
* Get machine constants
*
EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
SAFMIN = DLAMCH( 'S' )
SAFMIN = SAFMIN + SAFMIN
SAFMAX = ONE / SAFMIN
*
* Scale A
*
ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
ANRM1 = ANRM
ANRM2 = ONE
IF( ANRM.LT.ONE ) THEN
IF( SAFMAX*ANRM.LT.ONE ) THEN
ANRM1 = SAFMIN
ANRM2 = SAFMAX*ANRM
END IF
END IF
*
IF( ANRM.GT.ZERO ) THEN
CALL ZLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 10
RETURN
END IF
END IF
*
* Scale B
*
BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
BNRM1 = BNRM
BNRM2 = ONE
IF( BNRM.LT.ONE ) THEN
IF( SAFMAX*BNRM.LT.ONE ) THEN
BNRM1 = SAFMIN
BNRM2 = SAFMAX*BNRM
END IF
END IF
*
IF( BNRM.GT.ZERO ) THEN
CALL ZLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 10
RETURN
END IF
END IF
*
* Permute the matrix to make it more nearly triangular
* Also "balance" the matrix.
*
ILEFT = 1
IRIGHT = N + 1
IRWORK = IRIGHT + N
CALL ZGGBAL( 'B', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
$ RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 1
GO TO 80
END IF
*
* Reduce B to triangular form, and initialize VL and/or VR
*
IROWS = IHI + 1 - ILO
IF( ILV ) THEN
ICOLS = N + 1 - ILO
ELSE
ICOLS = IROWS
END IF
ITAU = 1
IWORK = ITAU + IROWS
CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
$ WORK( IWORK ), LWORK+1-IWORK, IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 2
GO TO 80
END IF
*
CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
$ LWORK+1-IWORK, IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 3
GO TO 80
END IF
*
IF( ILVL ) THEN
CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
$ VL( ILO+1, ILO ), LDVL )
CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
$ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
$ IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 4
GO TO 80
END IF
END IF
*
IF( ILVR )
$ CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
*
* Reduce to generalized Hessenberg form
*
IF( ILV ) THEN
*
* Eigenvectors requested -- work on whole matrix.
*
CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
$ LDVL, VR, LDVR, IINFO )
ELSE
CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
$ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
END IF
IF( IINFO.NE.0 ) THEN
INFO = N + 5
GO TO 80
END IF
*
* Perform QZ algorithm
*
IWORK = ITAU
IF( ILV ) THEN
CHTEMP = 'S'
ELSE
CHTEMP = 'E'
END IF
CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
$ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWORK ),
$ LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
INFO = IINFO
ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
INFO = IINFO - N
ELSE
INFO = N + 6
END IF
GO TO 80
END IF
*
IF( ILV ) THEN
*
* Compute Eigenvectors
*
IF( ILVL ) THEN
IF( ILVR ) THEN
CHTEMP = 'B'
ELSE
CHTEMP = 'L'
END IF
ELSE
CHTEMP = 'R'
END IF
*
CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
$ VR, LDVR, N, IN, WORK( IWORK ), RWORK( IRWORK ),
$ IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 7
GO TO 80
END IF
*
* Undo balancing on VL and VR, rescale
*
IF( ILVL ) THEN
CALL ZGGBAK( 'B', 'L', N, ILO, IHI, RWORK( ILEFT ),
$ RWORK( IRIGHT ), N, VL, LDVL, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 8
GO TO 80
END IF
DO 30 JC = 1, N
TEMP = ZERO
DO 10 JR = 1, N
TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
10 CONTINUE
IF( TEMP.LT.SAFMIN )
$ GO TO 30
TEMP = ONE / TEMP
DO 20 JR = 1, N
VL( JR, JC ) = VL( JR, JC )*TEMP
20 CONTINUE
30 CONTINUE
END IF
IF( ILVR ) THEN
CALL ZGGBAK( 'B', 'R', N, ILO, IHI, RWORK( ILEFT ),
$ RWORK( IRIGHT ), N, VR, LDVR, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 9
GO TO 80
END IF
DO 60 JC = 1, N
TEMP = ZERO
DO 40 JR = 1, N
TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
40 CONTINUE
IF( TEMP.LT.SAFMIN )
$ GO TO 60
TEMP = ONE / TEMP
DO 50 JR = 1, N
VR( JR, JC ) = VR( JR, JC )*TEMP
50 CONTINUE
60 CONTINUE
END IF
*
* End of eigenvector calculation
*
END IF
*
* Undo scaling in alpha, beta
*
* Note: this does not give the alpha and beta for the unscaled
* problem.
*
* Un-scaling is limited to avoid underflow in alpha and beta
* if they are significant.
*
DO 70 JC = 1, N
ABSAR = ABS( DBLE( ALPHA( JC ) ) )
ABSAI = ABS( DIMAG( ALPHA( JC ) ) )
ABSB = ABS( DBLE( BETA( JC ) ) )
SALFAR = ANRM*DBLE( ALPHA( JC ) )
SALFAI = ANRM*DIMAG( ALPHA( JC ) )
SBETA = BNRM*DBLE( BETA( JC ) )
ILIMIT = .FALSE.
SCALE = ONE
*
* Check for significant underflow in imaginary part of ALPHA
*
IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
$ MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
ILIMIT = .TRUE.
SCALE = ( SAFMIN / ANRM1 ) / MAX( SAFMIN, ANRM2*ABSAI )
END IF
*
* Check for significant underflow in real part of ALPHA
*
IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
$ MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
ILIMIT = .TRUE.
SCALE = MAX( SCALE, ( SAFMIN / ANRM1 ) /
$ MAX( SAFMIN, ANRM2*ABSAR ) )
END IF
*
* Check for significant underflow in BETA
*
IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
$ MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
ILIMIT = .TRUE.
SCALE = MAX( SCALE, ( SAFMIN / BNRM1 ) /
$ MAX( SAFMIN, BNRM2*ABSB ) )
END IF
*
* Check for possible overflow when limiting scaling
*
IF( ILIMIT ) THEN
TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
$ ABS( SBETA ) )
IF( TEMP.GT.ONE )
$ SCALE = SCALE / TEMP
IF( SCALE.LT.ONE )
$ ILIMIT = .FALSE.
END IF
*
* Recompute un-scaled ALPHA, BETA if necessary.
*
IF( ILIMIT ) THEN
SALFAR = ( SCALE*DBLE( ALPHA( JC ) ) )*ANRM
SALFAI = ( SCALE*DIMAG( ALPHA( JC ) ) )*ANRM
SBETA = ( SCALE*BETA( JC ) )*BNRM
END IF
ALPHA( JC ) = DCMPLX( SALFAR, SALFAI )
BETA( JC ) = SBETA
70 CONTINUE
*
80 CONTINUE
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of ZGEGV
*
END
|