File: zgttrf.f

package info (click to toggle)
lapack 2.0.1-2.1
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 32,452 kB
  • ctags: 32,918
  • sloc: fortran: 393,502; makefile: 1,494; ansic: 15
file content (155 lines) | stat: -rw-r--r-- 4,726 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
      SUBROUTINE ZGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         D( * ), DL( * ), DU( * ), DU2( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGTTRF computes an LU factorization of a complex tridiagonal matrix A
*  using elimination with partial pivoting and row interchanges.
*
*  The factorization has the form
*     A = L * U
*  where L is a product of permutation and unit lower bidiagonal
*  matrices and U is upper triangular with nonzeros in only the main
*  diagonal and first two superdiagonals.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  DL      (input/output) COMPLEX*16 array, dimension (N-1)
*          On entry, DL must contain the (n-1) subdiagonal elements of
*          A.
*          On exit, DL is overwritten by the (n-1) multipliers that
*          define the matrix L from the LU factorization of A.
*
*  D       (input/output) COMPLEX*16 array, dimension (N)
*          On entry, D must contain the diagonal elements of A.
*          On exit, D is overwritten by the n diagonal elements of the
*          upper triangular matrix U from the LU factorization of A.
*
*  DU      (input/output) COMPLEX*16 array, dimension (N-1)
*          On entry, DU must contain the (n-1) superdiagonal elements
*          of A.
*          On exit, DU is overwritten by the (n-1) elements of the first
*          superdiagonal of U.
*
*  DU2     (output) COMPLEX*16 array, dimension (N-2)
*          On exit, DU2 is overwritten by the (n-2) elements of the
*          second superdiagonal of U.
*
*  IPIV    (output) INTEGER array, dimension (N)
*          The pivot indices; for 1 <= i <= n, row i of the matrix was
*          interchanged with row IPIV(i).  IPIV(i) will always be either
*          i or i+1; IPIV(i) = i indicates a row interchange was not
*          required.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
*                has been completed, but the factor U is exactly
*                singular, and division by zero will occur if it is used
*                to solve a system of equations.
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I
      COMPLEX*16         FACT, TEMP, ZDUM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DIMAG
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Parameters ..
      COMPLEX*16         CZERO
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
         CALL XERBLA( 'ZGTTRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Initialize IPIV(i) = i
*
      DO 10 I = 1, N
         IPIV( I ) = I
   10 CONTINUE
*
      DO 20 I = 1, N - 1
         IF( DL( I ).EQ.CZERO ) THEN
*
*           Subdiagonal is zero, no elimination is required.
*
            IF( D( I ).EQ.CZERO .AND. INFO.EQ.0 )
     $         INFO = I
            IF( I.LT.N-1 )
     $         DU2( I ) = CZERO
         ELSE IF( CABS1( D( I ) ).GE.CABS1( DL( I ) ) ) THEN
*
*           No row interchange required, eliminate DL(I)
*
            FACT = DL( I ) / D( I )
            DL( I ) = FACT
            D( I+1 ) = D( I+1 ) - FACT*DU( I )
            IF( I.LT.N-1 )
     $         DU2( I ) = CZERO
         ELSE
*
*           Interchange rows I and I+1, eliminate DL(I)
*
            FACT = D( I ) / DL( I )
            D( I ) = DL( I )
            DL( I ) = FACT
            TEMP = DU( I )
            DU( I ) = D( I+1 )
            D( I+1 ) = TEMP - FACT*D( I+1 )
            IF( I.LT.N-1 ) THEN
               DU2( I ) = DU( I+1 )
               DU( I+1 ) = -FACT*DU( I+1 )
            END IF
            IPIV( I ) = IPIV( I ) + 1
         END IF
   20 CONTINUE
      IF( D( N ).EQ.CZERO .AND. INFO.EQ.0 ) THEN
         INFO = N
         RETURN
      END IF
*
      RETURN
*
*     End of ZGTTRF
*
      END