File: cbdt01.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (215 lines) | stat: -rw-r--r-- 6,942 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
      SUBROUTINE CBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
     $                   RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            KD, LDA, LDPT, LDQ, M, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * ), RWORK( * )
      COMPLEX            A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CBDT01 reconstructs a general matrix A from its bidiagonal form
*     A = Q * B * P'
*  where Q (m by min(m,n)) and P' (min(m,n) by n) are unitary
*  matrices and B is bidiagonal.
*
*  The test ratio to test the reduction is
*     RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
*  where PT = P' and EPS is the machine precision.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrices A and Q.
*
*  N       (input) INTEGER
*          The number of columns of the matrices A and P'.
*
*  KD      (input) INTEGER
*          If KD = 0, B is diagonal and the array E is not referenced.
*          If KD = 1, the reduction was performed by xGEBRD; B is upper
*          bidiagonal if M >= N, and lower bidiagonal if M < N.
*          If KD = -1, the reduction was performed by xGBBRD; B is
*          always upper bidiagonal.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The m by n matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  Q       (input) COMPLEX array, dimension (LDQ,N)
*          The m by min(m,n) unitary matrix Q in the reduction
*          A = Q * B * P'.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.  LDQ >= max(1,M).
*
*  D       (input) REAL array, dimension (min(M,N))
*          The diagonal elements of the bidiagonal matrix B.
*
*  E       (input) REAL array, dimension (min(M,N)-1)
*          The superdiagonal elements of the bidiagonal matrix B if
*          m >= n, or the subdiagonal elements of B if m < n.
*
*  PT      (input) COMPLEX array, dimension (LDPT,N)
*          The min(m,n) by n unitary matrix P' in the reduction
*          A = Q * B * P'.
*
*  LDPT    (input) INTEGER
*          The leading dimension of the array PT.
*          LDPT >= max(1,min(M,N)).
*
*  WORK    (workspace) COMPLEX array, dimension (M+N)
*
*  RWORK   (workspace) REAL array, dimension (M)
*
*  RESID   (output) REAL
*          The test ratio:  norm(A - Q * B * P') / ( n * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               ANORM, EPS
*     ..
*     .. External Functions ..
      REAL               CLANGE, SCASUM, SLAMCH
      EXTERNAL           CLANGE, SCASUM, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CGEMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Compute A - Q * B * P' one column at a time.
*
      RESID = ZERO
      IF( KD.NE.0 ) THEN
*
*        B is bidiagonal.
*
         IF( KD.NE.0 .AND. M.GE.N ) THEN
*
*           B is upper bidiagonal and M >= N.
*
            DO 20 J = 1, N
               CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
               DO 10 I = 1, N - 1
                  WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
   10          CONTINUE
               WORK( M+N ) = D( N )*PT( N, J )
               CALL CGEMV( 'No transpose', M, N, -CMPLX( ONE ), Q, LDQ,
     $                     WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
               RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
   20       CONTINUE
         ELSE IF( KD.LT.0 ) THEN
*
*           B is upper bidiagonal and M < N.
*
            DO 40 J = 1, N
               CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
               DO 30 I = 1, M - 1
                  WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
   30          CONTINUE
               WORK( M+M ) = D( M )*PT( M, J )
               CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ,
     $                     WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
               RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
   40       CONTINUE
         ELSE
*
*           B is lower bidiagonal.
*
            DO 60 J = 1, N
               CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
               WORK( M+1 ) = D( 1 )*PT( 1, J )
               DO 50 I = 2, M
                  WORK( M+I ) = E( I-1 )*PT( I-1, J ) +
     $                          D( I )*PT( I, J )
   50          CONTINUE
               CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ,
     $                     WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
               RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
   60       CONTINUE
         END IF
      ELSE
*
*        B is diagonal.
*
         IF( M.GE.N ) THEN
            DO 80 J = 1, N
               CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
               DO 70 I = 1, N
                  WORK( M+I ) = D( I )*PT( I, J )
   70          CONTINUE
               CALL CGEMV( 'No transpose', M, N, -CMPLX( ONE ), Q, LDQ,
     $                     WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
               RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
   80       CONTINUE
         ELSE
            DO 100 J = 1, N
               CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
               DO 90 I = 1, M
                  WORK( M+I ) = D( I )*PT( I, J )
   90          CONTINUE
               CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ,
     $                     WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
               RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
  100       CONTINUE
         END IF
      END IF
*
*     Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
*
      ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
      EPS = SLAMCH( 'Precision' )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         IF( ANORM.GE.RESID ) THEN
            RESID = ( RESID / ANORM ) / ( REAL( N )*EPS )
         ELSE
            IF( ANORM.LT.ONE ) THEN
               RESID = ( MIN( RESID, REAL( N )*ANORM ) / ANORM ) /
     $                 ( REAL( N )*EPS )
            ELSE
               RESID = MIN( RESID / ANORM, REAL( N ) ) /
     $                 ( REAL( N )*EPS )
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of CBDT01
*
      END