File: cget22.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (242 lines) | stat: -rw-r--r-- 7,024 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
      SUBROUTINE CGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W,
     $                   WORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          TRANSA, TRANSE, TRANSW
      INTEGER            LDA, LDE, N
*     ..
*     .. Array Arguments ..
      REAL               RESULT( 2 ), RWORK( * )
      COMPLEX            A( LDA, * ), E( LDE, * ), W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CGET22 does an eigenvector check.
*
*  The basic test is:
*
*     RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
*
*  using the 1-norm.  It also tests the normalization of E:
*
*     RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*                  j
*
*  where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
*  vector.  The max-norm of a complex n-vector x in this case is the
*  maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n.
*
*  Arguments
*  ==========
*
*  TRANSA  (input) CHARACTER*1
*          Specifies whether or not A is transposed.
*          = 'N':  No transpose
*          = 'T':  Transpose
*          = 'C':  Conjugate transpose
*
*  TRANSE  (input) CHARACTER*1
*          Specifies whether or not E is transposed.
*          = 'N':  No transpose, eigenvectors are in columns of E
*          = 'T':  Transpose, eigenvectors are in rows of E
*          = 'C':  Conjugate transpose, eigenvectors are in rows of E
*
*  TRANSW  (input) CHARACTER*1
*          Specifies whether or not W is transposed.
*          = 'N':  No transpose
*          = 'T':  Transpose, same as TRANSW = 'N'
*          = 'C':  Conjugate transpose, use -WI(j) instead of WI(j)
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The matrix whose eigenvectors are in E.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  E       (input) COMPLEX array, dimension (LDE,N)
*          The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
*          are stored in the columns of E, if TRANSE = 'T' or 'C', the
*          eigenvectors are stored in the rows of E.
*
*  LDE     (input) INTEGER
*          The leading dimension of the array E.  LDE >= max(1,N).
*
*  W       (input) COMPLEX array, dimension (N)
*          The eigenvalues of A.
*
*  WORK    (workspace) COMPLEX array, dimension (N*N)
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESULT  (output) REAL array, dimension (2)
*          RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
*          RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*                       j
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      CHARACTER          NORMA, NORME
      INTEGER            ITRNSE, ITRNSW, J, JCOL, JOFF, JROW, JVEC
      REAL               ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
     $                   ULP, UNFL
      COMPLEX            WTEMP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGE, SLAMCH
      EXTERNAL           LSAME, CLANGE, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, CONJG, MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Initialize RESULT (in case N=0)
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      UNFL = SLAMCH( 'Safe minimum' )
      ULP = SLAMCH( 'Precision' )
*
      ITRNSE = 0
      ITRNSW = 0
      NORMA = 'O'
      NORME = 'O'
*
      IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
         NORMA = 'I'
      END IF
*
      IF( LSAME( TRANSE, 'T' ) ) THEN
         ITRNSE = 1
         NORME = 'I'
      ELSE IF( LSAME( TRANSE, 'C' ) ) THEN
         ITRNSE = 2
         NORME = 'I'
      END IF
*
      IF( LSAME( TRANSW, 'C' ) ) THEN
         ITRNSW = 1
      END IF
*
*     Normalization of E:
*
      ENRMIN = ONE / ULP
      ENRMAX = ZERO
      IF( ITRNSE.EQ.0 ) THEN
         DO 20 JVEC = 1, N
            TEMP1 = ZERO
            DO 10 J = 1, N
               TEMP1 = MAX( TEMP1, ABS( REAL( E( J, JVEC ) ) )+
     $                 ABS( AIMAG( E( J, JVEC ) ) ) )
   10       CONTINUE
            ENRMIN = MIN( ENRMIN, TEMP1 )
            ENRMAX = MAX( ENRMAX, TEMP1 )
   20    CONTINUE
      ELSE
         DO 30 JVEC = 1, N
            RWORK( JVEC ) = ZERO
   30    CONTINUE
*
         DO 50 J = 1, N
            DO 40 JVEC = 1, N
               RWORK( JVEC ) = MAX( RWORK( JVEC ),
     $                         ABS( REAL( E( JVEC, J ) ) )+
     $                         ABS( AIMAG( E( JVEC, J ) ) ) )
   40       CONTINUE
   50    CONTINUE
*
         DO 60 JVEC = 1, N
            ENRMIN = MIN( ENRMIN, RWORK( JVEC ) )
            ENRMAX = MAX( ENRMAX, RWORK( JVEC ) )
   60    CONTINUE
      END IF
*
*     Norm of A:
*
      ANORM = MAX( CLANGE( NORMA, N, N, A, LDA, RWORK ), UNFL )
*
*     Norm of E:
*
      ENORM = MAX( CLANGE( NORME, N, N, E, LDE, RWORK ), ULP )
*
*     Norm of error:
*
*     Error =  AE - EW
*
      CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
*
      JOFF = 0
      DO 100 JCOL = 1, N
         IF( ITRNSW.EQ.0 ) THEN
            WTEMP = W( JCOL )
         ELSE
            WTEMP = CONJG( W( JCOL ) )
         END IF
*
         IF( ITRNSE.EQ.0 ) THEN
            DO 70 JROW = 1, N
               WORK( JOFF+JROW ) = E( JROW, JCOL )*WTEMP
   70       CONTINUE
         ELSE IF( ITRNSE.EQ.1 ) THEN
            DO 80 JROW = 1, N
               WORK( JOFF+JROW ) = E( JCOL, JROW )*WTEMP
   80       CONTINUE
         ELSE
            DO 90 JROW = 1, N
               WORK( JOFF+JROW ) = CONJG( E( JCOL, JROW ) )*WTEMP
   90       CONTINUE
         END IF
         JOFF = JOFF + N
  100 CONTINUE
*
      CALL CGEMM( TRANSA, TRANSE, N, N, N, CONE, A, LDA, E, LDE, -CONE,
     $            WORK, N )
*
      ERRNRM = CLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
*
*     Compute RESULT(1) (avoiding under/overflow)
*
      IF( ANORM.GT.ERRNRM ) THEN
         RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( ERRNRM, ANORM ) / ANORM ) / ULP
         ELSE
            RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
         END IF
      END IF
*
*     Compute RESULT(2) : the normalization error in E.
*
      RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
     $              ( REAL( N )*ULP )
*
      RETURN
*
*     End of CGET22
*
      END