File: cglmts.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (145 lines) | stat: -rw-r--r-- 4,348 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
      SUBROUTINE CGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF,
     $                   X, U, WORK, LWORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     March 31, 1993
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB, LWORK, M, P, N
      REAL               RESULT
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), AF( LDA, * ), B( LDB, * ),
     $                   BF( LDB, * ), D( * ), DF( * ), U( * ),
     $                   WORK( LWORK ), X( * )
*
*  Purpose
*  =======
*
*  CGLMTS tests CGGGLM - a subroutine for solving the generalized
*  linear model problem.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The number of rows of the matrices A and B.  N >= 0.
*
*  M       (input) INTEGER
*          The number of columns of the matrix A.  M >= 0.
*
*  P       (input) INTEGER
*          The number of columns of the matrix B.  P >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,M)
*          The N-by-M matrix A.
*
*  AF      (workspace) COMPLEX array, dimension (LDA,M)
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF. LDA >= max(M,N).
*
*  B       (input) COMPLEX array, dimension (LDB,P)
*          The N-by-P matrix A.
*
*  BF      (workspace) COMPLEX array, dimension (LDB,P)
*
*  LDB     (input) INTEGER
*          The leading dimension of the arrays B, BF. LDB >= max(P,N).
*
*  D       (input) COMPLEX array, dimension( N )
*          On input, the left hand side of the GLM.
*
*  DF      (workspace) COMPLEX array, dimension( N )
*
*  X       (output) COMPLEX array, dimension( M )
*          solution vector X in the GLM problem.
*
*  U       (output) COMPLEX array, dimension( P )
*          solution vector U in the GLM problem.
*
*  WORK    (workspace) COMPLEX array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) REAL array, dimension (M)
*
*  RESULT   (output) REAL
*          The test ratio:
*                           norm( d - A*x - B*u )
*            RESULT = -----------------------------------------
*                     (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
*  ====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
      COMPLEX            CONE
      PARAMETER          ( CONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      REAL               ANORM, BNORM, EPS, XNORM, YNORM, DNORM, UNFL
*     ..
*     .. External Functions ..
      REAL               SCASUM, SLAMCH, CLANGE
      EXTERNAL           SCASUM, SLAMCH, CLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLACPY
*
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
      EPS = SLAMCH( 'Epsilon' )
      UNFL = SLAMCH( 'Safe minimum' )
      ANORM = MAX( CLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
      BNORM = MAX( CLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
*
*     Copy the matrices A and B to the arrays AF and BF,
*     and the vector D the array DF.
*
      CALL CLACPY( 'Full', N, M, A, LDA, AF, LDA )
      CALL CLACPY( 'Full', N, P, B, LDB, BF, LDB )
      CALL CCOPY( N, D, 1, DF, 1 )
*
*     Solve GLM problem
*
      CALL CGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK,
     $             INFO )
*
*     Test the residual for the solution of LSE
*
*                       norm( d - A*x - B*u )
*       RESULT = -----------------------------------------
*                (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
      CALL CCOPY( N, D, 1, DF, 1 )
      CALL CGEMV( 'No transpose', N, M, -CONE, A, LDA, X, 1, CONE,
     $            DF, 1 )
*
      CALL CGEMV( 'No transpose', N, P, -CONE, B, LDB, U, 1, CONE,
     $            DF, 1 )
*
      DNORM = SCASUM( N, DF, 1 )
      XNORM = SCASUM( M, X, 1 ) + SCASUM( P, U, 1 )
      YNORM = ANORM + BNORM
*
      IF( XNORM.LE.ZERO ) THEN
         RESULT = ZERO
      ELSE
         RESULT =  ( ( DNORM / YNORM ) / XNORM ) /EPS
      END IF
*
      RETURN
*
*     End of CGLMTS
*
      END