File: dget22.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (307 lines) | stat: -rw-r--r-- 9,272 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
      SUBROUTINE DGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR,
     $                   WI, WORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          TRANSA, TRANSE, TRANSW
      INTEGER            LDA, LDE, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), E( LDE, * ), RESULT( 2 ), WI( * ),
     $                   WORK( * ), WR( * )
*     ..
*
*  Purpose
*  =======
*
*  DGET22 does an eigenvector check.
*
*  The basic test is:
*
*     RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
*
*  using the 1-norm.  It also tests the normalization of E:
*
*     RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*                  j
*
*  where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
*  vector.  If an eigenvector is complex, as determined from WI(j)
*  nonzero, then the max-norm of the vector ( er + i*ei ) is the maximum
*  of
*     |er(1)| + |ei(1)|, ... , |er(n)| + |ei(n)|
*
*  W is a block diagonal matrix, with a 1 by 1 block for each real
*  eigenvalue and a 2 by 2 block for each complex conjugate pair.
*  If eigenvalues j and j+1 are a complex conjugate pair, so that
*  WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the 2 by 2
*  block corresponding to the pair will be:
*
*     (  wr  wi  )
*     ( -wi  wr  )
*
*  Such a block multiplying an n by 2 matrix ( ur ui ) on the right
*  will be the same as multiplying  ur + i*ui  by  wr + i*wi.
*
*  To handle various schemes for storage of left eigenvectors, there are
*  options to use A-transpose instead of A, E-transpose instead of E,
*  and/or W-transpose instead of W.
*
*  Arguments
*  ==========
*
*  TRANSA  (input) CHARACTER*1
*          Specifies whether or not A is transposed.
*          = 'N':  No transpose
*          = 'T':  Transpose
*          = 'C':  Conjugate transpose (= Transpose)
*
*  TRANSE  (input) CHARACTER*1
*          Specifies whether or not E is transposed.
*          = 'N':  No transpose, eigenvectors are in columns of E
*          = 'T':  Transpose, eigenvectors are in rows of E
*          = 'C':  Conjugate transpose (= Transpose)
*
*  TRANSW  (input) CHARACTER*1
*          Specifies whether or not W is transposed.
*          = 'N':  No transpose
*          = 'T':  Transpose, use -WI(j) instead of WI(j)
*          = 'C':  Conjugate transpose, use -WI(j) instead of WI(j)
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The matrix whose eigenvectors are in E.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  E       (input) DOUBLE PRECISION array, dimension (LDE,N)
*          The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
*          are stored in the columns of E, if TRANSE = 'T' or 'C', the
*          eigenvectors are stored in the rows of E.
*
*  LDE     (input) INTEGER
*          The leading dimension of the array E.  LDE >= max(1,N).
*
*  WR      (input) DOUBLE PRECISION array, dimension (N)
*  WI      (input) DOUBLE PRECISION array, dimension (N)
*          The real and imaginary parts of the eigenvalues of A.
*          Purely real eigenvalues are indicated by WI(j) = 0.
*          Complex conjugate pairs are indicated by WR(j)=WR(j+1) and
*          WI(j) = - WI(j+1) non-zero; the real part is assumed to be
*          stored in the j-th row/column and the imaginary part in
*          the (j+1)-th row/column.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N*(N+1))
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
*          RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          NORMA, NORME
      INTEGER            IECOL, IEROW, INCE, IPAIR, ITRNSE, J, JCOL,
     $                   JVEC
      DOUBLE PRECISION   ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
     $                   ULP, UNFL
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   WMAT( 2, 2 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANGE
      EXTERNAL           LSAME, DLAMCH, DLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DGEMM, DLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Initialize RESULT (in case N=0)
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Precision' )
*
      ITRNSE = 0
      INCE = 1
      NORMA = 'O'
      NORME = 'O'
*
      IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
         NORMA = 'I'
      END IF
      IF( LSAME( TRANSE, 'T' ) .OR. LSAME( TRANSE, 'C' ) ) THEN
         NORME = 'I'
         ITRNSE = 1
         INCE = LDE
      END IF
*
*     Check normalization of E
*
      ENRMIN = ONE / ULP
      ENRMAX = ZERO
      IF( ITRNSE.EQ.0 ) THEN
*
*        Eigenvectors are column vectors.
*
         IPAIR = 0
         DO 30 JVEC = 1, N
            TEMP1 = ZERO
            IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
     $         IPAIR = 1
            IF( IPAIR.EQ.1 ) THEN
*
*              Complex eigenvector
*
               DO 10 J = 1, N
                  TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+
     $                    ABS( E( J, JVEC+1 ) ) )
   10          CONTINUE
               ENRMIN = MIN( ENRMIN, TEMP1 )
               ENRMAX = MAX( ENRMAX, TEMP1 )
               IPAIR = 2
            ELSE IF( IPAIR.EQ.2 ) THEN
               IPAIR = 0
            ELSE
*
*              Real eigenvector
*
               DO 20 J = 1, N
                  TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) )
   20          CONTINUE
               ENRMIN = MIN( ENRMIN, TEMP1 )
               ENRMAX = MAX( ENRMAX, TEMP1 )
               IPAIR = 0
            END IF
   30    CONTINUE
*
      ELSE
*
*        Eigenvectors are row vectors.
*
         DO 40 JVEC = 1, N
            WORK( JVEC ) = ZERO
   40    CONTINUE
*
         DO 60 J = 1, N
            IPAIR = 0
            DO 50 JVEC = 1, N
               IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
     $            IPAIR = 1
               IF( IPAIR.EQ.1 ) THEN
                  WORK( JVEC ) = MAX( WORK( JVEC ),
     $                           ABS( E( J, JVEC ) )+ABS( E( J,
     $                           JVEC+1 ) ) )
                  WORK( JVEC+1 ) = WORK( JVEC )
               ELSE IF( IPAIR.EQ.2 ) THEN
                  IPAIR = 0
               ELSE
                  WORK( JVEC ) = MAX( WORK( JVEC ),
     $                           ABS( E( J, JVEC ) ) )
                  IPAIR = 0
               END IF
   50       CONTINUE
   60    CONTINUE
*
         DO 70 JVEC = 1, N
            ENRMIN = MIN( ENRMIN, WORK( JVEC ) )
            ENRMAX = MAX( ENRMAX, WORK( JVEC ) )
   70    CONTINUE
      END IF
*
*     Norm of A:
*
      ANORM = MAX( DLANGE( NORMA, N, N, A, LDA, WORK ), UNFL )
*
*     Norm of E:
*
      ENORM = MAX( DLANGE( NORME, N, N, E, LDE, WORK ), ULP )
*
*     Norm of error:
*
*     Error =  AE - EW
*
      CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
*
      IPAIR = 0
      IEROW = 1
      IECOL = 1
*
      DO 80 JCOL = 1, N
         IF( ITRNSE.EQ.1 ) THEN
            IEROW = JCOL
         ELSE
            IECOL = JCOL
         END IF
*
         IF( IPAIR.EQ.0 .AND. WI( JCOL ).NE.ZERO )
     $      IPAIR = 1
*
         IF( IPAIR.EQ.1 ) THEN
            WMAT( 1, 1 ) = WR( JCOL )
            WMAT( 2, 1 ) = -WI( JCOL )
            WMAT( 1, 2 ) = WI( JCOL )
            WMAT( 2, 2 ) = WR( JCOL )
            CALL DGEMM( TRANSE, TRANSW, N, 2, 2, ONE, E( IEROW, IECOL ),
     $                  LDE, WMAT, 2, ZERO, WORK( N*( JCOL-1 )+1 ), N )
            IPAIR = 2
         ELSE IF( IPAIR.EQ.2 ) THEN
            IPAIR = 0
*
         ELSE
*
            CALL DAXPY( N, WR( JCOL ), E( IEROW, IECOL ), INCE,
     $                  WORK( N*( JCOL-1 )+1 ), 1 )
            IPAIR = 0
         END IF
*
   80 CONTINUE
*
      CALL DGEMM( TRANSA, TRANSE, N, N, N, ONE, A, LDA, E, LDE, -ONE,
     $            WORK, N )
*
      ERRNRM = DLANGE( 'One', N, N, WORK, N, WORK( N*N+1 ) ) / ENORM
*
*     Compute RESULT(1) (avoiding under/overflow)
*
      IF( ANORM.GT.ERRNRM ) THEN
         RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( ERRNRM, ANORM ) / ANORM ) / ULP
         ELSE
            RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
         END IF
      END IF
*
*     Compute RESULT(2) : the normalization error in E.
*
      RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
     $              ( DBLE( N )*ULP )
*
      RETURN
*
*     End of DGET22
*
      END