| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 
 |       SUBROUTINE DGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR,
     $                   WI, WORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          TRANSA, TRANSE, TRANSW
      INTEGER            LDA, LDE, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), E( LDE, * ), RESULT( 2 ), WI( * ),
     $                   WORK( * ), WR( * )
*     ..
*
*  Purpose
*  =======
*
*  DGET22 does an eigenvector check.
*
*  The basic test is:
*
*     RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
*
*  using the 1-norm.  It also tests the normalization of E:
*
*     RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*                  j
*
*  where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
*  vector.  If an eigenvector is complex, as determined from WI(j)
*  nonzero, then the max-norm of the vector ( er + i*ei ) is the maximum
*  of
*     |er(1)| + |ei(1)|, ... , |er(n)| + |ei(n)|
*
*  W is a block diagonal matrix, with a 1 by 1 block for each real
*  eigenvalue and a 2 by 2 block for each complex conjugate pair.
*  If eigenvalues j and j+1 are a complex conjugate pair, so that
*  WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the 2 by 2
*  block corresponding to the pair will be:
*
*     (  wr  wi  )
*     ( -wi  wr  )
*
*  Such a block multiplying an n by 2 matrix ( ur ui ) on the right
*  will be the same as multiplying  ur + i*ui  by  wr + i*wi.
*
*  To handle various schemes for storage of left eigenvectors, there are
*  options to use A-transpose instead of A, E-transpose instead of E,
*  and/or W-transpose instead of W.
*
*  Arguments
*  ==========
*
*  TRANSA  (input) CHARACTER*1
*          Specifies whether or not A is transposed.
*          = 'N':  No transpose
*          = 'T':  Transpose
*          = 'C':  Conjugate transpose (= Transpose)
*
*  TRANSE  (input) CHARACTER*1
*          Specifies whether or not E is transposed.
*          = 'N':  No transpose, eigenvectors are in columns of E
*          = 'T':  Transpose, eigenvectors are in rows of E
*          = 'C':  Conjugate transpose (= Transpose)
*
*  TRANSW  (input) CHARACTER*1
*          Specifies whether or not W is transposed.
*          = 'N':  No transpose
*          = 'T':  Transpose, use -WI(j) instead of WI(j)
*          = 'C':  Conjugate transpose, use -WI(j) instead of WI(j)
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The matrix whose eigenvectors are in E.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  E       (input) DOUBLE PRECISION array, dimension (LDE,N)
*          The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
*          are stored in the columns of E, if TRANSE = 'T' or 'C', the
*          eigenvectors are stored in the rows of E.
*
*  LDE     (input) INTEGER
*          The leading dimension of the array E.  LDE >= max(1,N).
*
*  WR      (input) DOUBLE PRECISION array, dimension (N)
*  WI      (input) DOUBLE PRECISION array, dimension (N)
*          The real and imaginary parts of the eigenvalues of A.
*          Purely real eigenvalues are indicated by WI(j) = 0.
*          Complex conjugate pairs are indicated by WR(j)=WR(j+1) and
*          WI(j) = - WI(j+1) non-zero; the real part is assumed to be
*          stored in the j-th row/column and the imaginary part in
*          the (j+1)-th row/column.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N*(N+1))
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
*          RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          NORMA, NORME
      INTEGER            IECOL, IEROW, INCE, IPAIR, ITRNSE, J, JCOL,
     $                   JVEC
      DOUBLE PRECISION   ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
     $                   ULP, UNFL
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   WMAT( 2, 2 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANGE
      EXTERNAL           LSAME, DLAMCH, DLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DGEMM, DLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Initialize RESULT (in case N=0)
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Precision' )
*
      ITRNSE = 0
      INCE = 1
      NORMA = 'O'
      NORME = 'O'
*
      IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
         NORMA = 'I'
      END IF
      IF( LSAME( TRANSE, 'T' ) .OR. LSAME( TRANSE, 'C' ) ) THEN
         NORME = 'I'
         ITRNSE = 1
         INCE = LDE
      END IF
*
*     Check normalization of E
*
      ENRMIN = ONE / ULP
      ENRMAX = ZERO
      IF( ITRNSE.EQ.0 ) THEN
*
*        Eigenvectors are column vectors.
*
         IPAIR = 0
         DO 30 JVEC = 1, N
            TEMP1 = ZERO
            IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
     $         IPAIR = 1
            IF( IPAIR.EQ.1 ) THEN
*
*              Complex eigenvector
*
               DO 10 J = 1, N
                  TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+
     $                    ABS( E( J, JVEC+1 ) ) )
   10          CONTINUE
               ENRMIN = MIN( ENRMIN, TEMP1 )
               ENRMAX = MAX( ENRMAX, TEMP1 )
               IPAIR = 2
            ELSE IF( IPAIR.EQ.2 ) THEN
               IPAIR = 0
            ELSE
*
*              Real eigenvector
*
               DO 20 J = 1, N
                  TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) )
   20          CONTINUE
               ENRMIN = MIN( ENRMIN, TEMP1 )
               ENRMAX = MAX( ENRMAX, TEMP1 )
               IPAIR = 0
            END IF
   30    CONTINUE
*
      ELSE
*
*        Eigenvectors are row vectors.
*
         DO 40 JVEC = 1, N
            WORK( JVEC ) = ZERO
   40    CONTINUE
*
         DO 60 J = 1, N
            IPAIR = 0
            DO 50 JVEC = 1, N
               IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
     $            IPAIR = 1
               IF( IPAIR.EQ.1 ) THEN
                  WORK( JVEC ) = MAX( WORK( JVEC ),
     $                           ABS( E( J, JVEC ) )+ABS( E( J,
     $                           JVEC+1 ) ) )
                  WORK( JVEC+1 ) = WORK( JVEC )
               ELSE IF( IPAIR.EQ.2 ) THEN
                  IPAIR = 0
               ELSE
                  WORK( JVEC ) = MAX( WORK( JVEC ),
     $                           ABS( E( J, JVEC ) ) )
                  IPAIR = 0
               END IF
   50       CONTINUE
   60    CONTINUE
*
         DO 70 JVEC = 1, N
            ENRMIN = MIN( ENRMIN, WORK( JVEC ) )
            ENRMAX = MAX( ENRMAX, WORK( JVEC ) )
   70    CONTINUE
      END IF
*
*     Norm of A:
*
      ANORM = MAX( DLANGE( NORMA, N, N, A, LDA, WORK ), UNFL )
*
*     Norm of E:
*
      ENORM = MAX( DLANGE( NORME, N, N, E, LDE, WORK ), ULP )
*
*     Norm of error:
*
*     Error =  AE - EW
*
      CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
*
      IPAIR = 0
      IEROW = 1
      IECOL = 1
*
      DO 80 JCOL = 1, N
         IF( ITRNSE.EQ.1 ) THEN
            IEROW = JCOL
         ELSE
            IECOL = JCOL
         END IF
*
         IF( IPAIR.EQ.0 .AND. WI( JCOL ).NE.ZERO )
     $      IPAIR = 1
*
         IF( IPAIR.EQ.1 ) THEN
            WMAT( 1, 1 ) = WR( JCOL )
            WMAT( 2, 1 ) = -WI( JCOL )
            WMAT( 1, 2 ) = WI( JCOL )
            WMAT( 2, 2 ) = WR( JCOL )
            CALL DGEMM( TRANSE, TRANSW, N, 2, 2, ONE, E( IEROW, IECOL ),
     $                  LDE, WMAT, 2, ZERO, WORK( N*( JCOL-1 )+1 ), N )
            IPAIR = 2
         ELSE IF( IPAIR.EQ.2 ) THEN
            IPAIR = 0
*
         ELSE
*
            CALL DAXPY( N, WR( JCOL ), E( IEROW, IECOL ), INCE,
     $                  WORK( N*( JCOL-1 )+1 ), 1 )
            IPAIR = 0
         END IF
*
   80 CONTINUE
*
      CALL DGEMM( TRANSA, TRANSE, N, N, N, ONE, A, LDA, E, LDE, -ONE,
     $            WORK, N )
*
      ERRNRM = DLANGE( 'One', N, N, WORK, N, WORK( N*N+1 ) ) / ENORM
*
*     Compute RESULT(1) (avoiding under/overflow)
*
      IF( ANORM.GT.ERRNRM ) THEN
         RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( ERRNRM, ANORM ) / ANORM ) / ULP
         ELSE
            RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
         END IF
      END IF
*
*     Compute RESULT(2) : the normalization error in E.
*
      RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
     $              ( DBLE( N )*ULP )
*
      RETURN
*
*     End of DGET22
*
      END
 |