1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
SUBROUTINE DSBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
$ RESULT )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER KA, KS, LDA, LDU, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
$ U( LDU, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DSBT21 generally checks a decomposition of the form
*
* A = U S U'
*
* where ' means transpose, A is symmetric banded, U is
* orthogonal, and S is diagonal (if KS=0) or symmetric
* tridiagonal (if KS=1).
*
* Specifically:
*
* RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and*
* RESULT(2) = | I - UU' | / ( n ulp )
*
* Arguments
* =========
*
* UPLO (input) CHARACTER
* If UPLO='U', the upper triangle of A and V will be used and
* the (strictly) lower triangle will not be referenced.
* If UPLO='L', the lower triangle of A and V will be used and
* the (strictly) upper triangle will not be referenced.
*
* N (input) INTEGER
* The size of the matrix. If it is zero, DSBT21 does nothing.
* It must be at least zero.
*
* KA (input) INTEGER
* The bandwidth of the matrix A. It must be at least zero. If
* it is larger than N-1, then max( 0, N-1 ) will be used.
*
* KS (input) INTEGER
* The bandwidth of the matrix S. It may only be zero or one.
* If zero, then S is diagonal, and E is not referenced. If
* one, then S is symmetric tri-diagonal.
*
* A (input) DOUBLE PRECISION array, dimension (LDA, N)
* The original (unfactored) matrix. It is assumed to be
* symmetric, and only the upper (UPLO='U') or only the lower
* (UPLO='L') will be referenced.
*
* LDA (input) INTEGER
* The leading dimension of A. It must be at least 1
* and at least min( KA, N-1 ).
*
* D (input) DOUBLE PRECISION array, dimension (N)
* The diagonal of the (symmetric tri-) diagonal matrix S.
*
* E (input) DOUBLE PRECISION array, dimension (N-1)
* The off-diagonal of the (symmetric tri-) diagonal matrix S.
* E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
* (3,2) element, etc.
* Not referenced if KS=0.
*
* U (input) DOUBLE PRECISION array, dimension (LDU, N)
* The orthogonal matrix in the decomposition, expressed as a
* dense matrix (i.e., not as a product of Householder
* transformations, Givens transformations, etc.)
*
* LDU (input) INTEGER
* The leading dimension of U. LDU must be at least N and
* at least 1.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (N**2+N)
*
* RESULT (output) DOUBLE PRECISION array, dimension (2)
* The values computed by the two tests described above. The
* values are currently limited to 1/ulp, to avoid overflow.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL LOWER
CHARACTER CUPLO
INTEGER IKA, J, JC, JR, LW
DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE, DLANSB, DLANSP
EXTERNAL LSAME, DLAMCH, DLANGE, DLANSB, DLANSP
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DSPR, DSPR2
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* Constants
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
IKA = MAX( 0, MIN( N-1, KA ) )
LW = ( N*( N+1 ) ) / 2
*
IF( LSAME( UPLO, 'U' ) ) THEN
LOWER = .FALSE.
CUPLO = 'U'
ELSE
LOWER = .TRUE.
CUPLO = 'L'
END IF
*
UNFL = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
* Some Error Checks
*
* Do Test 1
*
* Norm of A:
*
ANORM = MAX( DLANSB( '1', CUPLO, N, IKA, A, LDA, WORK ), UNFL )
*
* Compute error matrix: Error = A - U S U'
*
* Copy A from SB to SP storage format.
*
J = 0
DO 50 JC = 1, N
IF( LOWER ) THEN
DO 10 JR = 1, MIN( IKA+1, N+1-JC )
J = J + 1
WORK( J ) = A( JR, JC )
10 CONTINUE
DO 20 JR = IKA + 2, N + 1 - JC
J = J + 1
WORK( J ) = ZERO
20 CONTINUE
ELSE
DO 30 JR = IKA + 2, JC
J = J + 1
WORK( J ) = ZERO
30 CONTINUE
DO 40 JR = MIN( IKA, JC-1 ), 0, -1
J = J + 1
WORK( J ) = A( IKA+1-JR, JC )
40 CONTINUE
END IF
50 CONTINUE
*
DO 60 J = 1, N
CALL DSPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
60 CONTINUE
*
IF( N.GT.1 .AND. KS.EQ.1 ) THEN
DO 70 J = 1, N - 1
CALL DSPR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ), 1,
$ WORK )
70 CONTINUE
END IF
WNORM = DLANSP( '1', CUPLO, N, WORK, WORK( LW+1 ) )
*
IF( ANORM.GT.WNORM ) THEN
RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
ELSE
RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
END IF
END IF
*
* Do Test 2
*
* Compute UU' - I
*
CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
$ N )
*
DO 80 J = 1, N
WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
80 CONTINUE
*
RESULT( 2 ) = MIN( DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ),
$ DBLE( N ) ) / ( N*ULP )
*
RETURN
*
* End of DSBT21
*
END
|