File: dspt21.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (365 lines) | stat: -rw-r--r-- 12,466 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
      SUBROUTINE DSPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
     $                   TAU, WORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            ITYPE, KBAND, LDU, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AP( * ), D( * ), E( * ), RESULT( 2 ), TAU( * ),
     $                   U( LDU, * ), VP( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DSPT21  generally checks a decomposition of the form
*
*          A = U S U'
*
*  where ' means transpose, A is symmetric (stored in packed format), U
*  is orthogonal, and S is diagonal (if KBAND=0) or symmetric
*  tridiagonal (if KBAND=1).  If ITYPE=1, then U is represented as a
*  dense matrix, otherwise the U is expressed as a product of
*  Householder transformations, whose vectors are stored in the array
*  "V" and whose scaling constants are in "TAU"; we shall use the
*  letter "V" to refer to the product of Householder transformations
*  (which should be equal to U).
*
*  Specifically, if ITYPE=1, then:
*
*          RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and*
*          RESULT(2) = | I - UU' | / ( n ulp )
*
*  If ITYPE=2, then:
*
*          RESULT(1) = | A - V S V' | / ( |A| n ulp )
*
*  If ITYPE=3, then:
*
*          RESULT(1) = | I - VU' | / ( n ulp )
*
*  Packed storage means that, for example, if UPLO='U', then the columns
*  of the upper triangle of A are stored one after another, so that
*  A(1,j+1) immediately follows A(j,j) in the array AP.  Similarly, if
*  UPLO='L', then the columns of the lower triangle of A are stored one
*  after another in AP, so that A(j+1,j+1) immediately follows A(n,j)
*  in the array AP.  This means that A(i,j) is stored in:
*
*     AP( i + j*(j-1)/2 )                 if UPLO='U'
*
*     AP( i + (2*n-j)*(j-1)/2 )           if UPLO='L'
*
*  The array VP bears the same relation to the matrix V that A does to
*  AP.
*
*  For ITYPE > 1, the transformation U is expressed as a product
*  of Householder transformations:
*
*     If UPLO='U', then  V = H(n-1)...H(1),  where
*
*         H(j) = I  -  tau(j) v(j) v(j)'
*
*     and the first j-1 elements of v(j) are stored in V(1:j-1,j+1),
*     (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ),
*     the j-th element is 1, and the last n-j elements are 0.
*
*     If UPLO='L', then  V = H(1)...H(n-1),  where
*
*         H(j) = I  -  tau(j) v(j) v(j)'
*
*     and the first j elements of v(j) are 0, the (j+1)-st is 1, and the
*     (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e.,
*     in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .)
*
*  Arguments
*  =========
*
*  ITYPE   (input) INTEGER
*          Specifies the type of tests to be performed.
*          1: U expressed as a dense orthogonal matrix:
*             RESULT(1) = | A - U S U' | / ( |A| n ulp )   *and*
*             RESULT(2) = | I - UU' | / ( n ulp )
*
*          2: U expressed as a product V of Housholder transformations:
*             RESULT(1) = | A - V S V' | / ( |A| n ulp )
*
*          3: U expressed both as a dense orthogonal matrix and
*             as a product of Housholder transformations:
*             RESULT(1) = | I - VU' | / ( n ulp )
*
*  UPLO    (input) CHARACTER
*          If UPLO='U', AP and VP are considered to contain the upper
*          triangle of A and V.
*          If UPLO='L', AP and VP are considered to contain the lower
*          triangle of A and V.
*
*  N       (input) INTEGER
*          The size of the matrix.  If it is zero, DSPT21 does nothing.
*          It must be at least zero.
*
*  KBAND   (input) INTEGER
*          The bandwidth of the matrix.  It may only be zero or one.
*          If zero, then S is diagonal, and E is not referenced.  If
*          one, then S is symmetric tri-diagonal.
*
*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          The original (unfactored) matrix.  It is assumed to be
*          symmetric, and contains the columns of just the upper
*          triangle (UPLO='U') or only the lower triangle (UPLO='L'),
*          packed one after another.
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The diagonal of the (symmetric tri-) diagonal matrix.
*
*  E       (input) DOUBLE PRECISION array, dimension (N-1)
*          The off-diagonal of the (symmetric tri-) diagonal matrix.
*          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
*          (3,2) element, etc.
*          Not referenced if KBAND=0.
*
*  U       (input) DOUBLE PRECISION array, dimension (LDU, N)
*          If ITYPE=1 or 3, this contains the orthogonal matrix in
*          the decomposition, expressed as a dense matrix.  If ITYPE=2,
*          then it is not referenced.
*
*  LDU     (input) INTEGER
*          The leading dimension of U.  LDU must be at least N and
*          at least 1.
*
*  VP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          If ITYPE=2 or 3, the columns of this array contain the
*          Householder vectors used to describe the orthogonal matrix
*          in the decomposition, as described in purpose.
*          *NOTE* If ITYPE=2 or 3, V is modified and restored.  The
*          subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
*          is set to one, and later reset to its original value, during
*          the course of the calculation.
*          If ITYPE=1, then it is neither referenced nor modified.
*
*  TAU     (input) DOUBLE PRECISION array, dimension (N)
*          If ITYPE >= 2, then TAU(j) is the scalar factor of
*          v(j) v(j)' in the Householder transformation H(j) of
*          the product  U = H(1)...H(n-2)
*          If ITYPE < 2, then TAU is not referenced.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N**2+N)
*          Workspace.
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          The values computed by the two tests described above.  The
*          values are currently limited to 1/ulp, to avoid overflow.
*          RESULT(1) is always modified.  RESULT(2) is modified only
*          if ITYPE=1.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TEN
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 )
      DOUBLE PRECISION   HALF
      PARAMETER          ( HALF = 1.0D+0 / 2.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER
      CHARACTER          CUPLO
      INTEGER            IINFO, J, JP, JP1, JR, LAP
      DOUBLE PRECISION   ANORM, TEMP, ULP, UNFL, VSAVE, WNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DDOT, DLAMCH, DLANGE, DLANSP
      EXTERNAL           LSAME, DDOT, DLAMCH, DLANGE, DLANSP
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DGEMM, DLACPY, DLASET, DOPMTR,
     $                   DSPMV, DSPR, DSPR2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     1)      Constants
*
      RESULT( 1 ) = ZERO
      IF( ITYPE.EQ.1 )
     $   RESULT( 2 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      LAP = ( N*( N+1 ) ) / 2
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         LOWER = .FALSE.
         CUPLO = 'U'
      ELSE
         LOWER = .TRUE.
         CUPLO = 'L'
      END IF
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
*     Some Error Checks
*
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
         RESULT( 1 ) = TEN / ULP
         RETURN
      END IF
*
*     Do Test 1
*
*     Norm of A:
*
      IF( ITYPE.EQ.3 ) THEN
         ANORM = ONE
      ELSE
         ANORM = MAX( DLANSP( '1', CUPLO, N, AP, WORK ), UNFL )
      END IF
*
*     Compute error matrix:
*
      IF( ITYPE.EQ.1 ) THEN
*
*        ITYPE=1: error = A - U S U'
*
         CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
         CALL DCOPY( LAP, AP, 1, WORK, 1 )
*
         DO 10 J = 1, N
            CALL DSPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
   10    CONTINUE
*
         IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
            DO 20 J = 1, N - 1
               CALL DSPR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ),
     $                     1, WORK )
   20       CONTINUE
         END IF
         WNORM = DLANSP( '1', CUPLO, N, WORK, WORK( N**2+1 ) )
*
      ELSE IF( ITYPE.EQ.2 ) THEN
*
*        ITYPE=2: error = V S V' - A
*
         CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
*
         IF( LOWER ) THEN
            WORK( LAP ) = D( N )
            DO 40 J = N - 1, 1, -1
               JP = ( ( 2*N-J )*( J-1 ) ) / 2
               JP1 = JP + N - J
               IF( KBAND.EQ.1 ) THEN
                  WORK( JP+J+1 ) = ( ONE-TAU( J ) )*E( J )
                  DO 30 JR = J + 2, N
                     WORK( JP+JR ) = -TAU( J )*E( J )*VP( JP+JR )
   30             CONTINUE
               END IF
*
               IF( TAU( J ).NE.ZERO ) THEN
                  VSAVE = VP( JP+J+1 )
                  VP( JP+J+1 ) = ONE
                  CALL DSPMV( 'L', N-J, ONE, WORK( JP1+J+1 ),
     $                        VP( JP+J+1 ), 1, ZERO, WORK( LAP+1 ), 1 )
                  TEMP = -HALF*TAU( J )*DDOT( N-J, WORK( LAP+1 ), 1,
     $                   VP( JP+J+1 ), 1 )
                  CALL DAXPY( N-J, TEMP, VP( JP+J+1 ), 1, WORK( LAP+1 ),
     $                        1 )
                  CALL DSPR2( 'L', N-J, -TAU( J ), VP( JP+J+1 ), 1,
     $                        WORK( LAP+1 ), 1, WORK( JP1+J+1 ) )
                  VP( JP+J+1 ) = VSAVE
               END IF
               WORK( JP+J ) = D( J )
   40       CONTINUE
         ELSE
            WORK( 1 ) = D( 1 )
            DO 60 J = 1, N - 1
               JP = ( J*( J-1 ) ) / 2
               JP1 = JP + J
               IF( KBAND.EQ.1 ) THEN
                  WORK( JP1+J ) = ( ONE-TAU( J ) )*E( J )
                  DO 50 JR = 1, J - 1
                     WORK( JP1+JR ) = -TAU( J )*E( J )*VP( JP1+JR )
   50             CONTINUE
               END IF
*
               IF( TAU( J ).NE.ZERO ) THEN
                  VSAVE = VP( JP1+J )
                  VP( JP1+J ) = ONE
                  CALL DSPMV( 'U', J, ONE, WORK, VP( JP1+1 ), 1, ZERO,
     $                        WORK( LAP+1 ), 1 )
                  TEMP = -HALF*TAU( J )*DDOT( J, WORK( LAP+1 ), 1,
     $                   VP( JP1+1 ), 1 )
                  CALL DAXPY( J, TEMP, VP( JP1+1 ), 1, WORK( LAP+1 ),
     $                        1 )
                  CALL DSPR2( 'U', J, -TAU( J ), VP( JP1+1 ), 1,
     $                        WORK( LAP+1 ), 1, WORK )
                  VP( JP1+J ) = VSAVE
               END IF
               WORK( JP1+J+1 ) = D( J+1 )
   60       CONTINUE
         END IF
*
         DO 70 J = 1, LAP
            WORK( J ) = WORK( J ) - AP( J )
   70    CONTINUE
         WNORM = DLANSP( '1', CUPLO, N, WORK, WORK( LAP+1 ) )
*
      ELSE IF( ITYPE.EQ.3 ) THEN
*
*        ITYPE=3: error = U V' - I
*
         IF( N.LT.2 )
     $      RETURN
         CALL DLACPY( ' ', N, N, U, LDU, WORK, N )
         CALL DOPMTR( 'R', CUPLO, 'T', N, N, VP, TAU, WORK, N,
     $                WORK( N**2+1 ), IINFO )
         IF( IINFO.NE.0 ) THEN
            RESULT( 1 ) = TEN / ULP
            RETURN
         END IF
*
         DO 80 J = 1, N
            WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
   80    CONTINUE
*
         WNORM = DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) )
      END IF
*
      IF( ANORM.GT.WNORM ) THEN
         RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
         ELSE
            RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
         END IF
      END IF
*
*     Do Test 2
*
*     Compute  UU' - I
*
      IF( ITYPE.EQ.1 ) THEN
         CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
     $               N )
*
         DO 90 J = 1, N
            WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
   90    CONTINUE
*
         RESULT( 2 ) = MIN( DLANGE( '1', N, N, WORK, N,
     $                 WORK( N**2+1 ) ), DBLE( N ) ) / ( N*ULP )
      END IF
*
      RETURN
*
*     End of DSPT21
*
      END