1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
SUBROUTINE DSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK,
$ RESULT )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER KBAND, LDU, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), SD( * ),
$ SE( * ), U( LDU, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DSTT21 checks a decomposition of the form
*
* A = U S U'
*
* where ' means transpose, A is symmetric tridiagonal, U is orthogonal,
* and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
* Two tests are performed:
*
* RESULT(1) = | A - U S U' | / ( |A| n ulp )
*
* RESULT(2) = | I - UU' | / ( n ulp )
*
* Arguments
* =========
*
* N (input) INTEGER
* The size of the matrix. If it is zero, DSTT21 does nothing.
* It must be at least zero.
*
* KBAND (input) INTEGER
* The bandwidth of the matrix S. It may only be zero or one.
* If zero, then S is diagonal, and SE is not referenced. If
* one, then S is symmetric tri-diagonal.
*
* AD (input) DOUBLE PRECISION array, dimension (N)
* The diagonal of the original (unfactored) matrix A. A is
* assumed to be symmetric tridiagonal.
*
* AE (input) DOUBLE PRECISION array, dimension (N-1)
* The off-diagonal of the original (unfactored) matrix A. A
* is assumed to be symmetric tridiagonal. AE(1) is the (1,2)
* and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc.
*
* SD (input) DOUBLE PRECISION array, dimension (N)
* The diagonal of the (symmetric tri-) diagonal matrix S.
*
* SE (input) DOUBLE PRECISION array, dimension (N-1)
* The off-diagonal of the (symmetric tri-) diagonal matrix S.
* Not referenced if KBSND=0. If KBAND=1, then AE(1) is the
* (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2)
* element, etc.
*
* U (input) DOUBLE PRECISION array, dimension (LDU, N)
* The orthogonal matrix in the decomposition.
*
* LDU (input) INTEGER
* The leading dimension of U. LDU must be at least N.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (N*(N+1))
*
* RESULT (output) DOUBLE PRECISION array, dimension (2)
* The values computed by the two tests described above. The
* values are currently limited to 1/ulp, to avoid overflow.
* RESULT(1) is always modified.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
INTEGER J
DOUBLE PRECISION ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DLASET, DSYR, DSYR2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* 1) Constants
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
UNFL = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Precision' )
*
* Do Test 1
*
* Copy A & Compute its 1-Norm:
*
CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
*
ANORM = ZERO
TEMP1 = ZERO
*
DO 10 J = 1, N - 1
WORK( ( N+1 )*( J-1 )+1 ) = AD( J )
WORK( ( N+1 )*( J-1 )+2 ) = AE( J )
TEMP2 = ABS( AE( J ) )
ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 )
TEMP1 = TEMP2
10 CONTINUE
*
WORK( N**2 ) = AD( N )
ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL )
*
* Norm of A - USU'
*
DO 20 J = 1, N
CALL DSYR( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N )
20 CONTINUE
*
IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
DO 30 J = 1, N - 1
CALL DSYR2( 'L', N, -SE( J ), U( 1, J ), 1, U( 1, J+1 ), 1,
$ WORK, N )
30 CONTINUE
END IF
*
WNORM = DLANSY( '1', 'L', N, WORK, N, WORK( N**2+1 ) )
*
IF( ANORM.GT.WNORM ) THEN
RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
ELSE
RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
END IF
END IF
*
* Do Test 2
*
* Compute UU' - I
*
CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
$ N )
*
DO 40 J = 1, N
WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
40 CONTINUE
*
RESULT( 2 ) = MIN( DBLE( N ), DLANGE( '1', N, N, WORK, N,
$ WORK( N**2+1 ) ) ) / ( N*ULP )
*
RETURN
*
* End of DSTT21
*
END
|