File: sgrqts.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (232 lines) | stat: -rw-r--r-- 7,509 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
      SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
     $                   BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB, LWORK, M, P, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), AF( LDA, * ), R( LDA, * ),
     $                   Q( LDA, * ),
     $                   B( LDB, * ), BF( LDB, * ), T( LDB, * ),
     $                   Z( LDB, * ), BWK( LDB, * ),
     $                   TAUA( * ), TAUB( * ),
     $                   RESULT( 4 ), RWORK( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  SGRQTS tests SGGRQF, which computes the GRQ factorization of an
*  M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  P       (input) INTEGER
*          The number of rows of the matrix B.  P >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrices A and B.  N >= 0.
*
*  A       (input) REAL array, dimension (LDA,N)
*          The M-by-N matrix A.
*
*  AF      (output) REAL array, dimension (LDA,N)
*          Details of the GRQ factorization of A and B, as returned
*          by SGGRQF, see SGGRQF for further details.
*
*  Q       (output) REAL array, dimension (LDA,N)
*          The N-by-N orthogonal matrix Q.
*
*  R       (workspace) REAL array, dimension (LDA,MAX(M,N))
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF, R and Q.
*          LDA >= max(M,N).
*
*  TAUA    (output) REAL array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors, as returned
*          by SGGQRC.
*
*  B       (input) REAL array, dimension (LDB,N)
*          On entry, the P-by-N matrix A.
*
*  BF      (output) REAL array, dimension (LDB,N)
*          Details of the GQR factorization of A and B, as returned
*          by SGGRQF, see SGGRQF for further details.
*
*  Z       (output) REAL array, dimension (LDB,P)
*          The P-by-P orthogonal matrix Z.
*
*  T       (workspace) REAL array, dimension (LDB,max(P,N))
*
*  BWK     (workspace) REAL array, dimension (LDB,N)
*
*  LDB     (input) INTEGER
*          The leading dimension of the arrays B, BF, Z and T.
*          LDB >= max(P,N).
*
*  TAUB    (output) REAL array, dimension (min(P,N))
*          The scalar factors of the elementary reflectors, as returned
*          by SGGRQF.
*
*  WORK    (workspace) REAL array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK, LWORK >= max(M,P,N)**2.
*
*  RWORK   (workspace) REAL array, dimension (M)
*
*  RESULT  (output) REAL array, dimension (4)
*          The test ratios:
*            RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP)
*            RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP)
*            RESULT(3) = norm( I - Q'*Q ) / ( N*ULP )
*            RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      REAL               ROGUE
      PARAMETER          ( ROGUE = -1.0E+10 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      REAL               ANORM, BNORM, ULP, UNFL, RESID
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLANGE, SLANSY
      EXTERNAL           SLAMCH, SLANGE, SLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMM, SGGRQF, SLACPY, SLASET, SORGQR,
     $                   SORGRQ, SSYRK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
      ULP = SLAMCH( 'Precision' )
      UNFL = SLAMCH( 'Safe minimum' )
*
*     Copy the matrix A to the array AF.
*
      CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
      CALL SLACPY( 'Full', P, N, B, LDB, BF, LDB )
*
      ANORM = MAX( SLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
      BNORM = MAX( SLANGE( '1', P, N, B, LDB, RWORK ), UNFL )
*
*     Factorize the matrices A and B in the arrays AF and BF.
*
      CALL SGGRQF( M, P, N, AF, LDA, TAUA, BF, LDB, TAUB, WORK,
     $             LWORK, INFO )
*
*     Generate the N-by-N matrix Q
*
      CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
      IF( M.LE.N ) THEN
         IF( M.GT.0 .AND. M.LT.N )
     $      CALL SLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
         IF( M.GT.1 )
     $      CALL SLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
     $                   Q( N-M+2, N-M+1 ), LDA )
      ELSE
         IF( N.GT.1 )
     $      CALL SLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
     $                   Q( 2, 1 ), LDA )
      END IF
      CALL SORGRQ( N, N, MIN( M, N ), Q, LDA, TAUA, WORK, LWORK, INFO )
*
*     Generate the P-by-P matrix Z
*
      CALL SLASET( 'Full', P, P, ROGUE, ROGUE, Z, LDB )
      IF( P.GT.1 )
     $   CALL SLACPY( 'Lower', P-1, N, BF( 2,1 ), LDB, Z( 2,1 ), LDB )
      CALL SORGQR( P, P, MIN( P,N ), Z, LDB, TAUB, WORK, LWORK, INFO )
*
*     Copy R
*
      CALL SLASET( 'Full', M, N, ZERO, ZERO, R, LDA )
      IF( M.LE.N )THEN
         CALL SLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA, R( 1, N-M+1 ),
     $                LDA )
      ELSE
         CALL SLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
         CALL SLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA, R( M-N+1, 1 ),
     $                LDA )
      END IF
*
*     Copy T
*
      CALL SLASET( 'Full', P, N, ZERO, ZERO, T, LDB )
      CALL SLACPY( 'Upper', P, N, BF, LDB, T, LDB )
*
*     Compute R - A*Q'
*
      CALL SGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q,
     $            LDA, ONE, R, LDA )
*
*     Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) .
*
      RESID = SLANGE( '1', M, N, R, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / REAL(MAX(1,M,N) ) ) / ANORM ) / ULP
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute T*Q - Z'*B
*
      CALL SGEMM( 'Transpose', 'No transpose', P, N, P, ONE, Z, LDB, B,
     $            LDB, ZERO, BWK, LDB )
      CALL SGEMM( 'No transpose', 'No transpose', P, N, N, ONE, T, LDB,
     $            Q, LDA, -ONE, BWK, LDB )
*
*     Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
*
      RESID = SLANGE( '1', P, N, BWK, LDB, RWORK )
      IF( BNORM.GT.ZERO ) THEN
         RESULT( 2 ) = ( ( RESID / REAL( MAX( 1,P,M ) ) )/BNORM ) / ULP
      ELSE
         RESULT( 2 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
      CALL SSYRK( 'Upper', 'No Transpose', N, N, -ONE, Q, LDA, ONE, R,
     $            LDA )
*
*     Compute norm( I - Q'*Q ) / ( N * ULP ) .
*
      RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
      RESULT( 3 ) = ( RESID / REAL( MAX( 1,N ) ) ) / ULP
*
*     Compute I - Z'*Z
*
      CALL SLASET( 'Full', P, P, ZERO, ONE, T, LDB )
      CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, Z, LDB, ONE, T,
     $            LDB )
*
*     Compute norm( I - Z'*Z ) / ( P*ULP ) .
*
      RESID = SLANSY( '1', 'Upper', P, T, LDB, RWORK )
      RESULT( 4 ) = ( RESID / REAL( MAX( 1,P ) ) ) / ULP
*
      RETURN
*
*     End of SGRQTS
*
      END