1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  
     | 
    
            SUBROUTINE ZBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            KD, LDU, LDVT, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), S( * )
      COMPLEX*16         U( LDU, * ), VT( LDVT, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZBDT03 reconstructs a bidiagonal matrix B from its SVD:
*     S = U' * B * V
*  where U and V are orthogonal matrices and S is diagonal.
*
*  The test ratio to test the singular value decomposition is
*     RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS )
*  where VT = V' and EPS is the machine precision.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix B is upper or lower bidiagonal.
*          = 'U':  Upper bidiagonal
*          = 'L':  Lower bidiagonal
*
*  N       (input) INTEGER
*          The order of the matrix B.
*
*  KD      (input) INTEGER
*          The bandwidth of the bidiagonal matrix B.  If KD = 1, the
*          matrix B is bidiagonal, and if KD = 0, B is diagonal and E is
*          not referenced.  If KD is greater than 1, it is assumed to be
*          1, and if KD is less than 0, it is assumed to be 0.
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The n diagonal elements of the bidiagonal matrix B.
*
*  E       (input) DOUBLE PRECISION array, dimension (N-1)
*          The (n-1) superdiagonal elements of the bidiagonal matrix B
*          if UPLO = 'U', or the (n-1) subdiagonal elements of B if
*          UPLO = 'L'.
*
*  U       (input) COMPLEX*16 array, dimension (LDU,N)
*          The n by n orthogonal matrix U in the reduction B = U'*A*P.
*
*  LDU     (input) INTEGER
*          The leading dimension of the array U.  LDU >= max(1,N)
*
*  S       (input) DOUBLE PRECISION array, dimension (N)
*          The singular values from the SVD of B, sorted in decreasing
*          order.
*
*  VT      (input) COMPLEX*16 array, dimension (LDVT,N)
*          The n by n orthogonal matrix V' in the reduction
*          B = U * S * V'.
*
*  LDVT    (input) INTEGER
*          The leading dimension of the array VT.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
*
*  RESID   (output) DOUBLE PRECISION
*          The test ratio:  norm(B - U * S * V') / ( n * norm(A) * EPS )
*
* ======================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   BNORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH, DZASUM
      EXTERNAL           LSAME, IDAMAX, DLAMCH, DZASUM
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      RESID = ZERO
      IF( N.LE.0 )
     $   RETURN
*
*     Compute B - U * S * V' one column at a time.
*
      BNORM = ZERO
      IF( KD.GE.1 ) THEN
*
*        B is bidiagonal.
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           B is upper bidiagonal.
*
            DO 20 J = 1, N
               DO 10 I = 1, N
                  WORK( N+I ) = S( I )*VT( I, J )
   10          CONTINUE
               CALL ZGEMV( 'No transpose', N, N, -DCMPLX( ONE ), U, LDU,
     $                     WORK( N+1 ), 1, DCMPLX( ZERO ), WORK, 1 )
               WORK( J ) = WORK( J ) + D( J )
               IF( J.GT.1 ) THEN
                  WORK( J-1 ) = WORK( J-1 ) + E( J-1 )
                  BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J-1 ) ) )
               ELSE
                  BNORM = MAX( BNORM, ABS( D( J ) ) )
               END IF
               RESID = MAX( RESID, DZASUM( N, WORK, 1 ) )
   20       CONTINUE
         ELSE
*
*           B is lower bidiagonal.
*
            DO 40 J = 1, N
               DO 30 I = 1, N
                  WORK( N+I ) = S( I )*VT( I, J )
   30          CONTINUE
               CALL ZGEMV( 'No transpose', N, N, -DCMPLX( ONE ), U, LDU,
     $                     WORK( N+1 ), 1, DCMPLX( ZERO ), WORK, 1 )
               WORK( J ) = WORK( J ) + D( J )
               IF( J.LT.N ) THEN
                  WORK( J+1 ) = WORK( J+1 ) + E( J )
                  BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J ) ) )
               ELSE
                  BNORM = MAX( BNORM, ABS( D( J ) ) )
               END IF
               RESID = MAX( RESID, DZASUM( N, WORK, 1 ) )
   40       CONTINUE
         END IF
      ELSE
*
*        B is diagonal.
*
         DO 60 J = 1, N
            DO 50 I = 1, N
               WORK( N+I ) = S( I )*VT( I, J )
   50       CONTINUE
            CALL ZGEMV( 'No transpose', N, N, -DCMPLX( ONE ), U, LDU,
     $                  WORK( N+1 ), 1, DCMPLX( ZERO ), WORK, 1 )
            WORK( J ) = WORK( J ) + D( J )
            RESID = MAX( RESID, DZASUM( N, WORK, 1 ) )
   60    CONTINUE
         J = IDAMAX( N, D, 1 )
         BNORM = ABS( D( J ) )
      END IF
*
*     Compute norm(B - U * S * V') / ( n * norm(B) * EPS )
*
      EPS = DLAMCH( 'Precision' )
*
      IF( BNORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         IF( BNORM.GE.RESID ) THEN
            RESID = ( RESID / BNORM ) / ( DBLE( N )*EPS )
         ELSE
            IF( BNORM.LT.ONE ) THEN
               RESID = ( MIN( RESID, DBLE( N )*BNORM ) / BNORM ) /
     $                 ( DBLE( N )*EPS )
            ELSE
               RESID = MIN( RESID / BNORM, DBLE( N ) ) /
     $                 ( DBLE( N )*EPS )
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of ZBDT03
*
      END
 
     |