File: zget51.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (202 lines) | stat: -rw-r--r-- 5,730 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
      SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            ITYPE, LDA, LDB, LDU, LDV, N
      DOUBLE PRECISION   RESULT
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * ), U( LDU, * ),
     $                   V( LDV, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*       ZGET51  generally checks a decomposition of the form
*
*               A = U B V*
*
*       where * means conjugate transpose and U and V are unitary.
*
*       Specifically, if ITYPE=1
*
*               RESULT = | A - U B V* | / ( |A| n ulp )
*
*       If ITYPE=2, then:
*
*               RESULT = | A - B | / ( |A| n ulp )
*
*       If ITYPE=3, then:
*
*               RESULT = | I - UU* | / ( n ulp )
*
*  Arguments
*  =========
*
*  ITYPE   (input) INTEGER
*          Specifies the type of tests to be performed.
*          =1: RESULT = | A - U B V* | / ( |A| n ulp )
*          =2: RESULT = | A - B | / ( |A| n ulp )
*          =3: RESULT = | I - UU* | / ( n ulp )
*
*  N       (input) INTEGER
*          The size of the matrix.  If it is zero, ZGET51 does nothing.
*          It must be at least zero.
*
*  A       (input) COMPLEX*16 array, dimension (LDA, N)
*          The original (unfactored) matrix.
*
*  LDA     (input) INTEGER
*          The leading dimension of A.  It must be at least 1
*          and at least N.
*
*  B       (input) COMPLEX*16 array, dimension (LDB, N)
*          The factored matrix.
*
*  LDB     (input) INTEGER
*          The leading dimension of B.  It must be at least 1
*          and at least N.
*
*  U       (input) COMPLEX*16 array, dimension (LDU, N)
*          The unitary matrix on the left-hand side in the
*          decomposition.
*          Not referenced if ITYPE=2
*
*  LDU     (input) INTEGER
*          The leading dimension of U.  LDU must be at least N and
*          at least 1.
*
*  V       (input) COMPLEX*16 array, dimension (LDV, N)
*          The unitary matrix on the left-hand side in the
*          decomposition.
*          Not referenced if ITYPE=2
*
*  LDV     (input) INTEGER
*          The leading dimension of V.  LDV must be at least N and
*          at least 1.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (2*N**2)
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  RESULT  (output) DOUBLE PRECISION
*          The values computed by the test specified by ITYPE.  The
*          value is currently limited to 1/ulp, to avoid overflow.
*          Errors are flagged by RESULT=10/ulp.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TEN
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            JCOL, JDIAG, JROW
      DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE
      EXTERNAL           DLAMCH, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZLACPY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      RESULT = ZERO
      IF( N.LE.0 )
     $   RETURN
*
*     Constants
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
*     Some Error Checks
*
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
         RESULT = TEN / ULP
         RETURN
      END IF
*
      IF( ITYPE.LE.2 ) THEN
*
*        Tests scaled by the norm(A)
*
         ANORM = MAX( ZLANGE( '1', N, N, A, LDA, RWORK ), UNFL )
*
         IF( ITYPE.EQ.1 ) THEN
*
*           ITYPE=1: Compute W = A - UBV'
*
            CALL ZLACPY( ' ', N, N, A, LDA, WORK, N )
            CALL ZGEMM( 'N', 'N', N, N, N, CONE, U, LDU, B, LDB, CZERO,
     $                  WORK( N**2+1 ), N )
*
            CALL ZGEMM( 'N', 'C', N, N, N, -CONE, WORK( N**2+1 ), N, V,
     $                  LDV, CONE, WORK, N )
*
         ELSE
*
*           ITYPE=2: Compute W = A - B
*
            CALL ZLACPY( ' ', N, N, B, LDB, WORK, N )
*
            DO 20 JCOL = 1, N
               DO 10 JROW = 1, N
                  WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
     $                - A( JROW, JCOL )
   10          CONTINUE
   20       CONTINUE
         END IF
*
*        Compute norm(W)/ ( ulp*norm(A) )
*
         WNORM = ZLANGE( '1', N, N, WORK, N, RWORK )
*
         IF( ANORM.GT.WNORM ) THEN
            RESULT = ( WNORM / ANORM ) / ( N*ULP )
         ELSE
            IF( ANORM.LT.ONE ) THEN
               RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
            ELSE
               RESULT = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
            END IF
         END IF
*
      ELSE
*
*        Tests not scaled by norm(A)
*
*        ITYPE=3: Compute  UU' - I
*
         CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
     $               WORK, N )
*
         DO 30 JDIAG = 1, N
            WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+
     $         1 ) - CONE
   30    CONTINUE
*
         RESULT = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
     $            DBLE( N ) ) / ( N*ULP )
      END IF
*
      RETURN
*
*     End of ZGET51
*
      END