File: zglmts.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (147 lines) | stat: -rw-r--r-- 4,439 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
      SUBROUTINE ZGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF, X, U,
     $                   WORK, LWORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     March 31, 1993
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB, LWORK, M, N, P
      DOUBLE PRECISION   RESULT
*     ..
*     .. Array Arguments ..
*
*  Purpose
*  =======
*
*  ZGLMTS tests ZGGGLM - a subroutine for solving the generalized
*  linear model problem.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The number of rows of the matrices A and B.  N >= 0.
*
*  M       (input) INTEGER
*          The number of columns of the matrix A.  M >= 0.
*
*  P       (input) INTEGER
*          The number of columns of the matrix B.  P >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,M)
*          The N-by-M matrix A.
*
*  AF      (workspace) COMPLEX*16 array, dimension (LDA,M)
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF. LDA >= max(M,N).
*
*  B       (input) COMPLEX*16 array, dimension (LDB,P)
*          The N-by-P matrix A.
*
*  BF      (workspace) COMPLEX*16 array, dimension (LDB,P)
*
*  LDB     (input) INTEGER
*          The leading dimension of the arrays B, BF. LDB >= max(P,N).
*
*  D       (input) COMPLEX*16 array, dimension( N )
*          On input, the left hand side of the GLM.
*
*  DF      (workspace) COMPLEX*16 array, dimension( N )
*
*  X       (output) COMPLEX*16 array, dimension( M )
*          solution vector X in the GLM problem.
*
*  U       (output) COMPLEX*16 array, dimension( P )
*          solution vector U in the GLM problem.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M)
*
*  RESULT   (output) DOUBLE PRECISION
*          The test ratio:
*                           norm( d - A*x - B*u )
*            RESULT = -----------------------------------------
*                     (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
*  ====================================================================
*
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), AF( LDA, * ), B( LDB, * ),
     $                   BF( LDB, * ), D( * ), DF( * ), U( * ),
     $                   WORK( LWORK ), X( * )
*     ..
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
      COMPLEX*16         CONE
      PARAMETER          ( CONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      DOUBLE PRECISION   ANORM, BNORM, DNORM, EPS, UNFL, XNORM, YNORM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DZASUM, ZLANGE
      EXTERNAL           DLAMCH, DZASUM, ZLANGE
*     ..
*     .. External Subroutines ..
*
      EXTERNAL           ZCOPY, ZGEMV, ZGGGLM, ZLACPY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
      EPS = DLAMCH( 'Epsilon' )
      UNFL = DLAMCH( 'Safe minimum' )
      ANORM = MAX( ZLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
      BNORM = MAX( ZLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
*
*     Copy the matrices A and B to the arrays AF and BF,
*     and the vector D the array DF.
*
      CALL ZLACPY( 'Full', N, M, A, LDA, AF, LDA )
      CALL ZLACPY( 'Full', N, P, B, LDB, BF, LDB )
      CALL ZCOPY( N, D, 1, DF, 1 )
*
*     Solve GLM problem
*
      CALL ZGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK,
     $             INFO )
*
*     Test the residual for the solution of LSE
*
*                       norm( d - A*x - B*u )
*       RESULT = -----------------------------------------
*                (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
      CALL ZCOPY( N, D, 1, DF, 1 )
      CALL ZGEMV( 'No transpose', N, M, -CONE, A, LDA, X, 1, CONE, DF,
     $            1 )
*
      CALL ZGEMV( 'No transpose', N, P, -CONE, B, LDB, U, 1, CONE, DF,
     $            1 )
*
      DNORM = DZASUM( N, DF, 1 )
      XNORM = DZASUM( M, X, 1 ) + DZASUM( P, U, 1 )
      YNORM = ANORM + BNORM
*
      IF( XNORM.LE.ZERO ) THEN
         RESULT = ZERO
      ELSE
         RESULT = ( ( DNORM / YNORM ) / XNORM ) / EPS
      END IF
*
      RETURN
*
*     End of ZGLMTS
*
      END