File: zstt21.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (176 lines) | stat: -rw-r--r-- 5,415 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
      SUBROUTINE ZSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK, RWORK,
     $                   RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            KBAND, LDU, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
     $                   SD( * ), SE( * )
      COMPLEX*16         U( LDU, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZSTT21  checks a decomposition of the form
*
*     A = U S U*
*
*  where * means conjugate transpose, A is real symmetric tridiagonal,
*  U is unitary, and S is real and diagonal (if KBAND=0) or symmetric
*  tridiagonal (if KBAND=1).  Two tests are performed:
*
*     RESULT(1) = | A - U S U* | / ( |A| n ulp )
*
*     RESULT(2) = | I - UU* | / ( n ulp )
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The size of the matrix.  If it is zero, ZSTT21 does nothing.
*          It must be at least zero.
*
*  KBAND   (input) INTEGER
*          The bandwidth of the matrix S.  It may only be zero or one.
*          If zero, then S is diagonal, and SE is not referenced.  If
*          one, then S is symmetric tri-diagonal.
*
*  AD      (input) DOUBLE PRECISION array, dimension (N)
*          The diagonal of the original (unfactored) matrix A.  A is
*          assumed to be real symmetric tridiagonal.
*
*  AE      (input) DOUBLE PRECISION array, dimension (N-1)
*          The off-diagonal of the original (unfactored) matrix A.  A
*          is assumed to be symmetric tridiagonal.  AE(1) is the (1,2)
*          and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc.
*
*  SD      (input) DOUBLE PRECISION array, dimension (N)
*          The diagonal of the real (symmetric tri-) diagonal matrix S.
*
*  SE      (input) DOUBLE PRECISION array, dimension (N-1)
*          The off-diagonal of the (symmetric tri-) diagonal matrix S.
*          Not referenced if KBSND=0.  If KBAND=1, then AE(1) is the
*          (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2)
*          element, etc.
*
*  U       (input) COMPLEX*16 array, dimension (LDU, N)
*          The unitary matrix in the decomposition.
*
*  LDU     (input) INTEGER
*          The leading dimension of U.  LDU must be at least N.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (N**2)
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          The values computed by the two tests described above.  The
*          values are currently limited to 1/ulp, to avoid overflow.
*          RESULT(1) is always modified.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      DOUBLE PRECISION   ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANHE
      EXTERNAL           DLAMCH, ZLANGE, ZLANHE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZHER, ZHER2, ZLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     1)      Constants
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Precision' )
*
*     Do Test 1
*
*     Copy A & Compute its 1-Norm:
*
      CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
*
      ANORM = ZERO
      TEMP1 = ZERO
*
      DO 10 J = 1, N - 1
         WORK( ( N+1 )*( J-1 )+1 ) = AD( J )
         WORK( ( N+1 )*( J-1 )+2 ) = AE( J )
         TEMP2 = ABS( AE( J ) )
         ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 )
         TEMP1 = TEMP2
   10 CONTINUE
*
      WORK( N**2 ) = AD( N )
      ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL )
*
*     Norm of A - USU*
*
      DO 20 J = 1, N
         CALL ZHER( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N )
   20 CONTINUE
*
      IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
         DO 30 J = 1, N - 1
            CALL ZHER2( 'L', N, -DCMPLX( SE( J ) ), U( 1, J ), 1,
     $                  U( 1, J+1 ), 1, WORK, N )
   30    CONTINUE
      END IF
*
      WNORM = ZLANHE( '1', 'L', N, WORK, N, RWORK )
*
      IF( ANORM.GT.WNORM ) THEN
         RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
         ELSE
            RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
         END IF
      END IF
*
*     Do Test 2
*
*     Compute  UU* - I
*
      CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK,
     $            N )
*
      DO 40 J = 1, N
         WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
   40 CONTINUE
*
      RESULT( 2 ) = MIN( DBLE( N ), ZLANGE( '1', N, N, WORK, N,
     $              RWORK ) ) / ( N*ULP )
*
      RETURN
*
*     End of ZSTT21
*
      END