File: zstt22.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (187 lines) | stat: -rw-r--r-- 5,853 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
      SUBROUTINE ZSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
     $                   LDWORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            KBAND, LDU, LDWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
     $                   SD( * ), SE( * )
      COMPLEX*16         U( LDU, * ), WORK( LDWORK, * )
*     ..
*
*  Purpose
*  =======
*
*  ZSTT22  checks a set of M eigenvalues and eigenvectors,
*
*      A U = U S
*
*  where A is Hermitian tridiagonal, the columns of U are unitary,
*  and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1).
*  Two tests are performed:
*
*     RESULT(1) = | U* A U - S | / ( |A| m ulp )
*
*     RESULT(2) = | I - U*U | / ( m ulp )
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The size of the matrix.  If it is zero, ZSTT22 does nothing.
*          It must be at least zero.
*
*  M       (input) INTEGER
*          The number of eigenpairs to check.  If it is zero, ZSTT22
*          does nothing.  It must be at least zero.
*
*  KBAND   (input) INTEGER
*          The bandwidth of the matrix S.  It may only be zero or one.
*          If zero, then S is diagonal, and SE is not referenced.  If
*          one, then S is Hermitian tri-diagonal.
*
*  AD      (input) DOUBLE PRECISION array, dimension (N)
*          The diagonal of the original (unfactored) matrix A.  A is
*          assumed to be Hermitian tridiagonal.
*
*  AE      (input) DOUBLE PRECISION array, dimension (N)
*          The off-diagonal of the original (unfactored) matrix A.  A
*          is assumed to be Hermitian tridiagonal.  AE(1) is ignored,
*          AE(2) is the (1,2) and (2,1) element, etc.
*
*  SD      (input) DOUBLE PRECISION array, dimension (N)
*          The diagonal of the (Hermitian tri-) diagonal matrix S.
*
*  SE      (input) DOUBLE PRECISION array, dimension (N)
*          The off-diagonal of the (Hermitian tri-) diagonal matrix S.
*          Not referenced if KBSND=0.  If KBAND=1, then AE(1) is
*          ignored, SE(2) is the (1,2) and (2,1) element, etc.
*
*  U       (input) DOUBLE PRECISION array, dimension (LDU, N)
*          The unitary matrix in the decomposition.
*
*  LDU     (input) INTEGER
*          The leading dimension of U.  LDU must be at least N.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LDWORK, M+1)
*
*  LDWORK  (input) INTEGER
*          The leading dimension of WORK.  LDWORK must be at least
*          max(1,M).
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          The values computed by the two tests described above.  The
*          values are currently limited to 1/ulp, to avoid overflow.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K
      DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
      COMPLEX*16         AUKJ
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSY
      EXTERNAL           DLAMCH, ZLANGE, ZLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 .OR. M.LE.0 )
     $   RETURN
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Epsilon' )
*
*     Do Test 1
*
*     Compute the 1-norm of A.
*
      IF( N.GT.1 ) THEN
         ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) )
         DO 10 J = 2, N - 1
            ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+
     $              ABS( AE( J-1 ) ) )
   10    CONTINUE
         ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) )
      ELSE
         ANORM = ABS( AD( 1 ) )
      END IF
      ANORM = MAX( ANORM, UNFL )
*
*     Norm of U*AU - S
*
      DO 40 I = 1, M
         DO 30 J = 1, M
            WORK( I, J ) = CZERO
            DO 20 K = 1, N
               AUKJ = AD( K )*U( K, J )
               IF( K.NE.N )
     $            AUKJ = AUKJ + AE( K )*U( K+1, J )
               IF( K.NE.1 )
     $            AUKJ = AUKJ + AE( K-1 )*U( K-1, J )
               WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ
   20       CONTINUE
   30    CONTINUE
         WORK( I, I ) = WORK( I, I ) - SD( I )
         IF( KBAND.EQ.1 ) THEN
            IF( I.NE.1 )
     $         WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 )
            IF( I.NE.N )
     $         WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I )
         END IF
   40 CONTINUE
*
      WNORM = ZLANSY( '1', 'L', M, WORK, M, RWORK )
*
      IF( ANORM.GT.WNORM ) THEN
         RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
         ELSE
            RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP )
         END IF
      END IF
*
*     Do Test 2
*
*     Compute  U*U - I
*
      CALL ZGEMM( 'T', 'N', M, M, N, CONE, U, LDU, U, LDU, CZERO, WORK,
     $            M )
*
      DO 50 J = 1, M
         WORK( J, J ) = WORK( J, J ) - ONE
   50 CONTINUE
*
      RESULT( 2 ) = MIN( DBLE( M ), ZLANGE( '1', M, M, WORK, M,
     $              RWORK ) ) / ( M*ULP )
*
      RETURN
*
*     End of ZSTT22
*
      END