1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
SUBROUTINE ZUNT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RWORK,
$ RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
CHARACTER ROWCOL
INTEGER LDU, LWORK, M, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * )
COMPLEX*16 U( LDU, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* ZUNT01 checks that the matrix U is unitary by computing the ratio
*
* RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
* or
* RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
*
* Alternatively, if there isn't sufficient workspace to form
* I - U*U' or I - U'*U, the ratio is computed as
*
* RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
* or
* RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
*
* where EPS is the machine precision. ROWCOL is used only if m = n;
* if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is
* assumed to be 'R'.
*
* Arguments
* =========
*
* ROWCOL (input) CHARACTER
* Specifies whether the rows or columns of U should be checked
* for orthogonality. Used only if M = N.
* = 'R': Check for orthogonal rows of U
* = 'C': Check for orthogonal columns of U
*
* M (input) INTEGER
* The number of rows of the matrix U.
*
* N (input) INTEGER
* The number of columns of the matrix U.
*
* U (input) COMPLEX*16 array, dimension (LDU,N)
* The unitary matrix U. U is checked for orthogonal columns
* if m > n or if m = n and ROWCOL = 'C'. U is checked for
* orthogonal rows if m < n or if m = n and ROWCOL = 'R'.
*
* LDU (input) INTEGER
* The leading dimension of the array U. LDU >= max(1,M).
*
* WORK (workspace) COMPLEX*16 array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The length of the array WORK. For best performance, LWORK
* should be at least N*N if ROWCOL = 'C' or M*M if
* ROWCOL = 'R', but the test will be done even if LWORK is 0.
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (min(M,N))
* Used only if LWORK is large enough to use the Level 3 BLAS
* code.
*
* RESID (output) DOUBLE PRECISION
* RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or
* RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
CHARACTER TRANSU
INTEGER I, J, K, LDWORK, MNMIN
DOUBLE PRECISION EPS
COMPLEX*16 TMP, ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANSY
COMPLEX*16 ZDOTC
EXTERNAL LSAME, DLAMCH, ZLANSY, ZDOTC
* ..
* .. External Subroutines ..
EXTERNAL ZHERK, ZLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DIMAG, MAX, MIN
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
RESID = ZERO
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
EPS = DLAMCH( 'Precision' )
IF( M.LT.N .OR. ( M.EQ.N .AND. LSAME( ROWCOL, 'R' ) ) ) THEN
TRANSU = 'N'
K = N
ELSE
TRANSU = 'C'
K = M
END IF
MNMIN = MIN( M, N )
*
IF( ( MNMIN+1 )*MNMIN.LE.LWORK ) THEN
LDWORK = MNMIN
ELSE
LDWORK = 0
END IF
IF( LDWORK.GT.0 ) THEN
*
* Compute I - U*U' or I - U'*U.
*
CALL ZLASET( 'Upper', MNMIN, MNMIN, DCMPLX( ZERO ),
$ DCMPLX( ONE ), WORK, LDWORK )
CALL ZHERK( 'Upper', TRANSU, MNMIN, K, -ONE, U, LDU, ONE, WORK,
$ LDWORK )
*
* Compute norm( I - U*U' ) / ( K * EPS ) .
*
RESID = ZLANSY( '1', 'Upper', MNMIN, WORK, LDWORK, RWORK )
RESID = ( RESID / DBLE( K ) ) / EPS
ELSE IF( TRANSU.EQ.'C' ) THEN
*
* Find the maximum element in abs( I - U'*U ) / ( m * EPS )
*
DO 20 J = 1, N
DO 10 I = 1, J
IF( I.NE.J ) THEN
TMP = ZERO
ELSE
TMP = ONE
END IF
TMP = TMP - ZDOTC( M, U( 1, I ), 1, U( 1, J ), 1 )
RESID = MAX( RESID, CABS1( TMP ) )
10 CONTINUE
20 CONTINUE
RESID = ( RESID / DBLE( M ) ) / EPS
ELSE
*
* Find the maximum element in abs( I - U*U' ) / ( n * EPS )
*
DO 40 J = 1, M
DO 30 I = 1, J
IF( I.NE.J ) THEN
TMP = ZERO
ELSE
TMP = ONE
END IF
TMP = TMP - ZDOTC( N, U( J, 1 ), LDU, U( I, 1 ), LDU )
RESID = MAX( RESID, CABS1( TMP ) )
30 CONTINUE
40 CONTINUE
RESID = ( RESID / DBLE( N ) ) / EPS
END IF
RETURN
*
* End of ZUNT01
*
END
|