| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 
 |       SUBROUTINE CCHKRQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
     $                   NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AR, AC,
     $                   B, X, XACT, TAU, WORK, RWORK, IWORK, NOUT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      LOGICAL            TSTERR
      INTEGER            NM, NMAX, NN, NNB, NOUT, NRHS
      REAL               THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * )
      INTEGER            IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ),
     $                   NXVAL( * )
      REAL               RWORK( * )
      COMPLEX            A( * ), AC( * ), AF( * ), AQ( * ), AR( * ),
     $                   B( * ), TAU( * ), WORK( * ), X( * ), XACT( * )
*     ..
*
*  Purpose
*  =======
*
*  CCHKRQ tests CGERQF, CUNGRQ and CUNMRQ.
*
*  Arguments
*  =========
*
*  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
*          The matrix types to be used for testing.  Matrices of type j
*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*
*  NM      (input) INTEGER
*          The number of values of M contained in the vector MVAL.
*
*  MVAL    (input) INTEGER array, dimension (NM)
*          The values of the matrix row dimension M.
*
*  NN      (input) INTEGER
*          The number of values of N contained in the vector NVAL.
*
*  NVAL    (input) INTEGER array, dimension (NN)
*          The values of the matrix column dimension N.
*
*  NNB     (input) INTEGER
*          The number of values of NB and NX contained in the
*          vectors NBVAL and NXVAL.  The blocking parameters are used
*          in pairs (NB,NX).
*
*  NBVAL   (input) INTEGER array, dimension (NNB)
*          The values of the blocksize NB.
*
*  NXVAL   (input) INTEGER array, dimension (NNB)
*          The values of the crossover point NX.
*
*  NRHS    (input) INTEGER
*          The number of right hand side vectors to be generated for
*          each linear system.
*
*  THRESH  (input) REAL
*          The threshold value for the test ratios.  A result is
*          included in the output file if RESULT >= THRESH.  To have
*          every test ratio printed, use THRESH = 0.
*
*  TSTERR  (input) LOGICAL
*          Flag that indicates whether error exits are to be tested.
*
*  NMAX    (input) INTEGER
*          The maximum value permitted for M or N, used in dimensioning
*          the work arrays.
*
*  A       (workspace) COMPLEX array, dimension (NMAX*NMAX)
*
*  AF      (workspace) COMPLEX array, dimension (NMAX*NMAX)
*
*  AQ      (workspace) COMPLEX array, dimension (NMAX*NMAX)
*
*  AR      (workspace) COMPLEX array, dimension (NMAX*NMAX)
*
*  AC      (workspace) COMPLEX array, dimension (NMAX*NMAX)
*
*  B       (workspace) COMPLEX array, dimension (NMAX*NRHS)
*
*  X       (workspace) COMPLEX array, dimension (NMAX*NRHS)
*
*  XACT    (workspace) COMPLEX array, dimension (NMAX*NRHS)
*
*  TAU     (workspace) COMPLEX array, dimension (NMAX)
*
*  WORK    (workspace) COMPLEX array, dimension (NMAX*NMAX)
*
*  RWORK   (workspace) REAL array, dimension (NMAX)
*
*  IWORK   (workspace) INTEGER array, dimension (NMAX)
*
*  NOUT    (input) INTEGER
*          The unit number for output.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NTESTS
      PARAMETER          ( NTESTS = 7 )
      INTEGER            NTYPES
      PARAMETER          ( NTYPES = 8 )
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          DIST, TYPE
      CHARACTER*3        PATH
      INTEGER            I, IK, IM, IMAT, IN, INB, INFO, K, KL, KU, LDA,
     $                   LWORK, M, MINMN, MODE, N, NB, NERRS, NFAIL, NK,
     $                   NRUN, NT, NX
      REAL               ANORM, CNDNUM
*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 ), ISEEDY( 4 ), KVAL( 4 )
      REAL               RESULT( NTESTS )
*     ..
*     .. External Subroutines ..
      EXTERNAL           ALAERH, ALAHD, ALASUM, CERRRQ, CGERQS, CGET02,
     $                   CLACPY, CLARHS, CLATB4, CLATMS, CRQT01, CRQT02,
     $                   CRQT03, XLAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Scalars in Common ..
      LOGICAL            LERR, OK
      CHARACTER*6        SRNAMT
      INTEGER            INFOT, NUNIT
*     ..
*     .. Common blocks ..
      COMMON             / INFOC / INFOT, NUNIT, OK, LERR
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Data statements ..
      DATA               ISEEDY / 1988, 1989, 1990, 1991 /
*     ..
*     .. Executable Statements ..
*
*     Initialize constants and the random number seed.
*
      PATH( 1: 1 ) = 'Complex precision'
      PATH( 2: 3 ) = 'RQ'
      NRUN = 0
      NFAIL = 0
      NERRS = 0
      DO 10 I = 1, 4
         ISEED( I ) = ISEEDY( I )
   10 CONTINUE
*
*     Test the error exits
*
      IF( TSTERR )
     $   CALL CERRRQ( PATH, NOUT )
      INFOT = 0
      CALL XLAENV( 2, 2 )
*
      LDA = NMAX
      LWORK = NMAX*MAX( NMAX, NRHS )
*
*     Do for each value of M in MVAL.
*
      DO 70 IM = 1, NM
         M = MVAL( IM )
*
*        Do for each value of N in NVAL.
*
         DO 60 IN = 1, NN
            N = NVAL( IN )
            MINMN = MIN( M, N )
            DO 50 IMAT = 1, NTYPES
*
*              Do the tests only if DOTYPE( IMAT ) is true.
*
               IF( .NOT.DOTYPE( IMAT ) )
     $            GO TO 50
*
*              Set up parameters with CLATB4 and generate a test matrix
*              with CLATMS.
*
               CALL CLATB4( PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE,
     $                      CNDNUM, DIST )
*
               SRNAMT = 'CLATMS'
               CALL CLATMS( M, N, DIST, ISEED, TYPE, RWORK, MODE,
     $                      CNDNUM, ANORM, KL, KU, 'No packing', A, LDA,
     $                      WORK, INFO )
*
*              Check error code from CLATMS.
*
               IF( INFO.NE.0 ) THEN
                  CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', M, N, -1,
     $                         -1, -1, IMAT, NFAIL, NERRS, NOUT )
                  GO TO 50
               END IF
*
*              Set some values for K: the first value must be MINMN,
*              corresponding to the call of CRQT01; other values are
*              used in the calls of CRQT02, and must not exceed MINMN.
*
               KVAL( 1 ) = MINMN
               KVAL( 2 ) = 0
               KVAL( 3 ) = 1
               KVAL( 4 ) = MINMN / 2
               IF( MINMN.EQ.0 ) THEN
                  NK = 1
               ELSE IF( MINMN.EQ.1 ) THEN
                  NK = 2
               ELSE IF( MINMN.LE.3 ) THEN
                  NK = 3
               ELSE
                  NK = 4
               END IF
*
*              Do for each value of K in KVAL
*
               DO 40 IK = 1, NK
                  K = KVAL( IK )
*
*                 Do for each pair of values (NB,NX) in NBVAL and NXVAL.
*
                  DO 30 INB = 1, NNB
                     NB = NBVAL( INB )
                     CALL XLAENV( 1, NB )
                     NX = NXVAL( INB )
                     CALL XLAENV( 3, NX )
                     NT = 2
                     IF( IK.EQ.1 ) THEN
*
*                       Test CGERQF
*
                        CALL CRQT01( M, N, A, AF, AQ, AR, LDA, TAU,
     $                               WORK, LWORK, RWORK, RESULT( 1 ) )
                     ELSE IF( M.LE.N ) THEN
*
*                       Test CUNGRQ, using factorization
*                       returned by CRQT01
*
                        CALL CRQT02( M, N, K, A, AF, AQ, AR, LDA, TAU,
     $                               WORK, LWORK, RWORK, RESULT( 1 ) )
                     ELSE
                        RESULT( 1 ) = ZERO
                        RESULT( 2 ) = ZERO
                     END IF
                     IF( M.GE.K ) THEN
*
*                       Test CUNMRQ, using factorization returned
*                       by CRQT01
*
                        CALL CRQT03( M, N, K, AF, AC, AR, AQ, LDA, TAU,
     $                               WORK, LWORK, RWORK, RESULT( 3 ) )
                        NT = NT + 4
*
*                       If M>=N and K=N, call CGERQS to solve a system
*                       with NRHS right hand sides and compute the
*                       residual.
*
                        IF( K.EQ.M .AND. INB.EQ.1 ) THEN
*
*                          Generate a solution and set the right
*                          hand side.
*
                           SRNAMT = 'CLARHS'
                           CALL CLARHS( PATH, 'New', 'Full',
     $                                  'No transpose', M, N, 0, 0,
     $                                  NRHS, A, LDA, XACT, LDA, B, LDA,
     $                                  ISEED, INFO )
*
                           CALL CLACPY( 'Full', M, NRHS, B, LDA,
     $                                  X( N-M+1 ), LDA )
                           SRNAMT = 'CGERQS'
                           CALL CGERQS( M, N, NRHS, AF, LDA, TAU, X,
     $                                  LDA, WORK, LWORK, INFO )
*
*                          Check error code from CGERQS.
*
                           IF( INFO.NE.0 )
     $                        CALL ALAERH( PATH, 'CGERQS', INFO, 0, ' ',
     $                                     M, N, NRHS, -1, NB, IMAT,
     $                                     NFAIL, NERRS, NOUT )
*
                           CALL CGET02( 'No transpose', M, N, NRHS, A,
     $                                  LDA, X, LDA, B, LDA, RWORK,
     $                                  RESULT( 7 ) )
                           NT = NT + 1
                        ELSE
                           RESULT( 7 ) = ZERO
                        END IF
                     ELSE
                        RESULT( 3 ) = ZERO
                        RESULT( 4 ) = ZERO
                        RESULT( 5 ) = ZERO
                        RESULT( 6 ) = ZERO
                     END IF
*
*                    Print information about the tests that did not
*                    pass the threshold.
*
                     DO 20 I = 1, NT
                        IF( RESULT( I ).GE.THRESH ) THEN
                           IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $                        CALL ALAHD( NOUT, PATH )
                           WRITE( NOUT, FMT = 9999 )M, N, K, NB, NX,
     $                        IMAT, I, RESULT( I )
                           NFAIL = NFAIL + 1
                        END IF
   20                CONTINUE
                     NRUN = NRUN + NT
   30             CONTINUE
   40          CONTINUE
   50       CONTINUE
   60    CONTINUE
   70 CONTINUE
*
*     Print a summary of the results.
*
      CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
 9999 FORMAT( ' M=', I5, ', N=', I5, ', K=', I5, ', NB=', I4, ', NX=',
     $      I5, ', type ', I2, ', test(', I2, ')=', G12.5 )
      RETURN
*
*     End of CCHKRQ
*
      END
 |