1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  
     | 
    
            SUBROUTINE CGTT02( TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB,
     $                   RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            LDB, LDX, N, NRHS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            B( LDB, * ), D( * ), DL( * ), DU( * ),
     $                   X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  CGTT02 computes the residual for the solution to a tridiagonal
*  system of equations:
*     RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS),
*  where EPS is the machine epsilon.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER
*          Specifies the form of the residual.
*          = 'N':  B - A * X     (No transpose)
*          = 'T':  B - A**T * X  (Transpose)
*          = 'C':  B - A**H * X  (Conjugate transpose)
*
*  N       (input) INTEGTER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrices B and X.  NRHS >= 0.
*
*  DL      (input) COMPLEX array, dimension (N-1)
*          The (n-1) sub-diagonal elements of A.
*
*  D       (input) COMPLEX array, dimension (N)
*          The diagonal elements of A.
*
*  DU      (input) COMPLEX array, dimension (N-1)
*          The (n-1) super-diagonal elements of A.
*
*  X       (input) COMPLEX array, dimension (LDX,NRHS)
*          The computed solution vectors X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the right hand side vectors for the system of
*          linear equations.
*          On exit, B is overwritten with the difference B - op(A)*X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESID   (output) REAL
*          norm(B - op(A)*X) / (norm(A) * norm(X) * EPS)
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      REAL               ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGT, SCASUM, SLAMCH
      EXTERNAL           LSAME, CLANGT, SCASUM, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLAGTM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0 or NRHS = 0
*
      RESID = ZERO
      IF( N.LE.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
*     Compute the maximum over the number of right hand sides of
*        norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ).
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         ANORM = CLANGT( '1', N, DL, D, DU )
      ELSE
         ANORM = CLANGT( 'I', N, DL, D, DU )
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute B - op(A)*X.
*
      CALL CLAGTM( TRANS, N, NRHS, -ONE, DL, D, DU, X, LDX, ONE, B,
     $             LDB )
*
      DO 10 J = 1, NRHS
         BNORM = SCASUM( N, B( 1, J ), 1 )
         XNORM = SCASUM( N, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
         END IF
   10 CONTINUE
*
      RETURN
*
*     End of CGTT02
*
      END
 
     |