1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
SUBROUTINE CRQT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER LDA, LWORK, M, N
* ..
* .. Array Arguments ..
REAL RESULT( * ), RWORK( * )
COMPLEX A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
$ R( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* Purpose
* =======
*
* CRQT01 tests CGERQF, which computes the RQ factorization of an m-by-n
* matrix A, and partially tests CUNGRQ which forms the n-by-n
* orthogonal matrix Q.
*
* CRQT01 compares R with A*Q', and checks that Q is orthogonal.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The m-by-n matrix A.
*
* AF (output) COMPLEX array, dimension (LDA,N)
* Details of the RQ factorization of A, as returned by CGERQF.
* See CGERQF for further details.
*
* Q (output) COMPLEX array, dimension (LDA,N)
* The n-by-n orthogonal matrix Q.
*
* R (workspace) COMPLEX array, dimension (LDA,max(M,N))
*
* LDA (input) INTEGER
* The leading dimension of the arrays A, AF, Q and L.
* LDA >= max(M,N).
*
* TAU (output) COMPLEX array, dimension (min(M,N))
* The scalar factors of the elementary reflectors, as returned
* by CGERQF.
*
* WORK (workspace) COMPLEX array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
*
* RWORK (workspace) REAL array, dimension (max(M,N))
*
* RESULT (output) REAL array, dimension (2)
* The test ratios:
* RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
* RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX ROGUE
PARAMETER ( ROGUE = ( -1.0E+10, -1.0E+10 ) )
* ..
* .. Local Scalars ..
INTEGER INFO, MINMN
REAL ANORM, EPS, RESID
* ..
* .. External Functions ..
REAL CLANGE, CLANSY, SLAMCH
EXTERNAL CLANGE, CLANSY, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CGEMM, CGERQF, CHERK, CLACPY, CLASET, CUNGRQ
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, MIN, REAL
* ..
* .. Scalars in Common ..
CHARACTER*6 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
MINMN = MIN( M, N )
EPS = SLAMCH( 'Epsilon' )
*
* Copy the matrix A to the array AF.
*
CALL CLACPY( 'Full', M, N, A, LDA, AF, LDA )
*
* Factorize the matrix A in the array AF.
*
SRNAMT = 'CGERQF'
CALL CGERQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
*
* Copy details of Q
*
CALL CLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
IF( M.LE.N ) THEN
IF( M.GT.0 .AND. M.LT.N )
$ CALL CLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
IF( M.GT.1 )
$ CALL CLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
$ Q( N-M+2, N-M+1 ), LDA )
ELSE
IF( N.GT.1 )
$ CALL CLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
$ Q( 2, 1 ), LDA )
END IF
*
* Generate the n-by-n matrix Q
*
SRNAMT = 'CUNGRQ'
CALL CUNGRQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
*
* Copy R
*
CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), R, LDA )
IF( M.LE.N ) THEN
IF( M.GT.0 )
$ CALL CLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA,
$ R( 1, N-M+1 ), LDA )
ELSE
IF( M.GT.N .AND. N.GT.0 )
$ CALL CLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
IF( N.GT.0 )
$ CALL CLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA,
$ R( M-N+1, 1 ), LDA )
END IF
*
* Compute R - A*Q'
*
CALL CGEMM( 'No transpose', 'Conjugate transpose', M, N, N,
$ CMPLX( -ONE ), A, LDA, Q, LDA, CMPLX( ONE ), R, LDA )
*
* Compute norm( R - Q'*A ) / ( N * norm(A) * EPS ) .
*
ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
RESID = CLANGE( '1', M, N, R, LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute I - Q*Q'
*
CALL CLASET( 'Full', N, N, CMPLX( ZERO ), CMPLX( ONE ), R, LDA )
CALL CHERK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, R,
$ LDA )
*
* Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
RESID = CLANSY( '1', 'Upper', N, R, LDA, RWORK )
*
RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
*
RETURN
*
* End of CRQT01
*
END
|