1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
SUBROUTINE CRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
REAL RESULT( * ), RWORK( * )
COMPLEX A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
$ R( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* Purpose
* =======
*
* CRQT02 tests CUNGRQ, which generates an m-by-n matrix Q with
* orthonornmal rows that is defined as the product of k elementary
* reflectors.
*
* Given the RQ factorization of an m-by-n matrix A, CRQT02 generates
* the orthogonal matrix Q defined by the factorization of the last k
* rows of A; it compares R(m-k+1:m,n-m+1:n) with
* A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are
* orthonormal.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix Q to be generated. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix Q to be generated.
* N >= M >= 0.
*
* K (input) INTEGER
* The number of elementary reflectors whose product defines the
* matrix Q. M >= K >= 0.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The m-by-n matrix A which was factorized by CRQT01.
*
* AF (input) COMPLEX array, dimension (LDA,N)
* Details of the RQ factorization of A, as returned by CGERQF.
* See CGERQF for further details.
*
* Q (workspace) COMPLEX array, dimension (LDA,N)
*
* R (workspace) COMPLEX array, dimension (LDA,M)
*
* LDA (input) INTEGER
* The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*
* TAU (input) COMPLEX array, dimension (M)
* The scalar factors of the elementary reflectors corresponding
* to the RQ factorization in AF.
*
* WORK (workspace) COMPLEX array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
*
* RWORK (workspace) REAL array, dimension (M)
*
* RESULT (output) REAL array, dimension (2)
* The test ratios:
* RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
* RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX ROGUE
PARAMETER ( ROGUE = ( -1.0E+10, -1.0E+10 ) )
* ..
* .. Local Scalars ..
INTEGER INFO
REAL ANORM, EPS, RESID
* ..
* .. External Functions ..
REAL CLANGE, CLANSY, SLAMCH
EXTERNAL CLANGE, CLANSY, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CGEMM, CHERK, CLACPY, CLASET, CUNGRQ
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, REAL
* ..
* .. Scalars in Common ..
CHARACTER*6 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
RETURN
END IF
*
EPS = SLAMCH( 'Epsilon' )
*
* Copy the last k rows of the factorization to the array Q
*
CALL CLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
IF( K.LT.N )
$ CALL CLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA,
$ Q( M-K+1, 1 ), LDA )
IF( K.GT.1 )
$ CALL CLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA,
$ Q( M-K+2, N-K+1 ), LDA )
*
* Generate the last n rows of the matrix Q
*
SRNAMT = 'CUNGRQ'
CALL CUNGRQ( M, N, K, Q, LDA, TAU( M-K+1 ), WORK, LWORK, INFO )
*
* Copy R(m-k+1:m,n-m+1:n)
*
CALL CLASET( 'Full', K, M, CMPLX( ZERO ), CMPLX( ZERO ),
$ R( M-K+1, N-M+1 ), LDA )
CALL CLACPY( 'Upper', K, K, AF( M-K+1, N-K+1 ), LDA,
$ R( M-K+1, N-K+1 ), LDA )
*
* Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)'
*
CALL CGEMM( 'No transpose', 'Conjugate transpose', K, M, N,
$ CMPLX( -ONE ), A( M-K+1, 1 ), LDA, Q, LDA,
$ CMPLX( ONE ), R( M-K+1, N-M+1 ), LDA )
*
* Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) .
*
ANORM = CLANGE( '1', K, N, A( M-K+1, 1 ), LDA, RWORK )
RESID = CLANGE( '1', K, M, R( M-K+1, N-M+1 ), LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute I - Q*Q'
*
CALL CLASET( 'Full', M, M, CMPLX( ZERO ), CMPLX( ONE ), R, LDA )
CALL CHERK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, R,
$ LDA )
*
* Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
RESID = CLANSY( '1', 'Upper', M, R, LDA, RWORK )
*
RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
*
RETURN
*
* End of CRQT02
*
END
|