1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
SUBROUTINE CSYT01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
$ RWORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDAFAC, LDC, N
REAL RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL RWORK( * )
COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
* ..
*
* Purpose
* =======
*
* CSYT01 reconstructs a complex symmetric indefinite matrix A from its
* block L*D*L' or U*D*U' factorization and computes the residual
* norm( C - A ) / ( N * norm(A) * EPS ),
* where C is the reconstructed matrix, EPS is the machine epsilon,
* L' is the transpose of L, and U' is the transpose of U.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* complex symmetric matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The number of rows and columns of the matrix A. N >= 0.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The original complex symmetric matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N)
*
* AFAC (input) COMPLEX array, dimension (LDAFAC,N)
* The factored form of the matrix A. AFAC contains the block
* diagonal matrix D and the multipliers used to obtain the
* factor L or U from the block L*D*L' or U*D*U' factorization
* as computed by CSYTRF.
*
* LDAFAC (input) INTEGER
* The leading dimension of the array AFAC. LDAFAC >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from CSYTRF.
*
* C (workspace) COMPLEX array, dimension (LDC,N)
*
* LDC (integer) INTEGER
* The leading dimension of the array C. LDC >= max(1,N).
*
* RWORK (workspace) REAL array, dimension (N)
*
* RESID (output) REAL
* If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
* If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J
REAL ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANSY, SLAMCH
EXTERNAL LSAME, CLANSY, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CLAVSY, CLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Determine EPS and the norm of A.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = CLANSY( '1', UPLO, N, A, LDA, RWORK )
*
* Initialize C to the identity matrix.
*
CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
* Call CLAVSY to form the product D * U' (or D * L' ).
*
CALL CLAVSY( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, LDAFAC,
$ IPIV, C, LDC, INFO )
*
* Call CLAVSY again to multiply by U (or L ).
*
CALL CLAVSY( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC,
$ IPIV, C, LDC, INFO )
*
* Compute the difference C - A .
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 J = 1, N
DO 10 I = 1, J
C( I, J ) = C( I, J ) - A( I, J )
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1, N
DO 30 I = J, N
C( I, J ) = C( I, J ) - A( I, J )
30 CONTINUE
40 CONTINUE
END IF
*
* Compute norm( C - A ) / ( N * norm(A) * EPS )
*
RESID = CLANSY( '1', UPLO, N, C, LDC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID/REAL( N ) )/ANORM ) / EPS
END IF
*
RETURN
*
* End of CSYT01
*
END
|