File: csyt01.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (153 lines) | stat: -rw-r--r-- 4,562 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
      SUBROUTINE CSYT01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
     $                   RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDAFAC, LDC, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  CSYT01 reconstructs a complex symmetric indefinite matrix A from its
*  block L*D*L' or U*D*U' factorization and computes the residual
*     norm( C - A ) / ( N * norm(A) * EPS ),
*  where C is the reconstructed matrix, EPS is the machine epsilon,
*  L' is the transpose of L, and U' is the transpose of U.
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          complex symmetric matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The original complex symmetric matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N)
*
*  AFAC    (input) COMPLEX array, dimension (LDAFAC,N)
*          The factored form of the matrix A.  AFAC contains the block
*          diagonal matrix D and the multipliers used to obtain the
*          factor L or U from the block L*D*L' or U*D*U' factorization
*          as computed by CSYTRF.
*
*  LDAFAC  (input) INTEGER
*          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices from CSYTRF.
*
*  C       (workspace) COMPLEX array, dimension (LDC,N)
*
*  LDC     (integer) INTEGER
*          The leading dimension of the array C.  LDC >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESID   (output) REAL
*          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
      REAL               ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANSY, SLAMCH
      EXTERNAL           LSAME, CLANSY, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLAVSY, CLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANSY( '1', UPLO, N, A, LDA, RWORK )
*
*     Initialize C to the identity matrix.
*
      CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
*     Call CLAVSY to form the product D * U' (or D * L' ).
*
      CALL CLAVSY( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, LDAFAC,
     $             IPIV, C, LDC, INFO )
*
*     Call CLAVSY again to multiply by U (or L ).
*
      CALL CLAVSY( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC,
     $             IPIV, C, LDC, INFO )
*
*     Compute the difference  C - A .
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 20 J = 1, N
            DO 10 I = 1, J
               C( I, J ) = C( I, J ) - A( I, J )
   10       CONTINUE
   20    CONTINUE
      ELSE
         DO 40 J = 1, N
            DO 30 I = J, N
               C( I, J ) = C( I, J ) - A( I, J )
   30       CONTINUE
   40    CONTINUE
      END IF
*
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
*
      RESID = CLANSY( '1', UPLO, N, C, LDC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID/REAL( N ) )/ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of CSYT01
*
      END