File: dlqt01.f

package info (click to toggle)
lapack 3.0-5.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 36,996 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,563; sh: 22
file content (157 lines) | stat: -rw-r--r-- 4,676 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
      SUBROUTINE DLQT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), AF( LDA, * ), L( LDA, * ),
     $                   Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  DLQT01 tests DGELQF, which computes the LQ factorization of an m-by-n
*  matrix A, and partially tests DORGLQ which forms the n-by-n
*  orthogonal matrix Q.
*
*  DLQT01 compares L with A*Q', and checks that Q is orthogonal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The m-by-n matrix A.
*
*  AF      (output) DOUBLE PRECISION array, dimension (LDA,N)
*          Details of the LQ factorization of A, as returned by DGELQF.
*          See DGELQF for further details.
*
*  Q       (output) DOUBLE PRECISION array, dimension (LDA,N)
*          The n-by-n orthogonal matrix Q.
*
*  L       (workspace) DOUBLE PRECISION array, dimension (LDA,max(M,N))
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF, Q and L.
*          LDA >= max(M,N).
*
*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors, as returned
*          by DGELQF.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(M,N))
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          The test ratios:
*          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   ROGUE
      PARAMETER          ( ROGUE = -1.0D+10 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO, MINMN
      DOUBLE PRECISION   ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANSY
      EXTERNAL           DLAMCH, DLANGE, DLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGELQF, DGEMM, DLACPY, DLASET, DORGLQ, DSYRK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Scalars in Common ..
      CHARACTER*6        SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      MINMN = MIN( M, N )
      EPS = DLAMCH( 'Epsilon' )
*
*     Copy the matrix A to the array AF.
*
      CALL DLACPY( 'Full', M, N, A, LDA, AF, LDA )
*
*     Factorize the matrix A in the array AF.
*
      SRNAMT = 'DGELQF'
      CALL DGELQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy details of Q
*
      CALL DLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
      IF( N.GT.1 )
     $   CALL DLACPY( 'Upper', M, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
*
*     Generate the n-by-n matrix Q
*
      SRNAMT = 'DORGLQ'
      CALL DORGLQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy L
*
      CALL DLASET( 'Full', M, N, ZERO, ZERO, L, LDA )
      CALL DLACPY( 'Lower', M, N, AF, LDA, L, LDA )
*
*     Compute L - A*Q'
*
      CALL DGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q,
     $            LDA, ONE, L, LDA )
*
*     Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) .
*
      ANORM = DLANGE( '1', M, N, A, LDA, RWORK )
      RESID = DLANGE( '1', M, N, L, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL DLASET( 'Full', N, N, ZERO, ONE, L, LDA )
      CALL DSYRK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, L,
     $            LDA )
*
*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
      RESID = DLANSY( '1', 'Upper', N, L, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
*
      RETURN
*
*     End of DLQT01
*
      END