| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 
 |       SUBROUTINE DLQT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), AF( LDA, * ), L( LDA, * ),
     $                   Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  DLQT01 tests DGELQF, which computes the LQ factorization of an m-by-n
*  matrix A, and partially tests DORGLQ which forms the n-by-n
*  orthogonal matrix Q.
*
*  DLQT01 compares L with A*Q', and checks that Q is orthogonal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The m-by-n matrix A.
*
*  AF      (output) DOUBLE PRECISION array, dimension (LDA,N)
*          Details of the LQ factorization of A, as returned by DGELQF.
*          See DGELQF for further details.
*
*  Q       (output) DOUBLE PRECISION array, dimension (LDA,N)
*          The n-by-n orthogonal matrix Q.
*
*  L       (workspace) DOUBLE PRECISION array, dimension (LDA,max(M,N))
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF, Q and L.
*          LDA >= max(M,N).
*
*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors, as returned
*          by DGELQF.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(M,N))
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          The test ratios:
*          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   ROGUE
      PARAMETER          ( ROGUE = -1.0D+10 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO, MINMN
      DOUBLE PRECISION   ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANSY
      EXTERNAL           DLAMCH, DLANGE, DLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGELQF, DGEMM, DLACPY, DLASET, DORGLQ, DSYRK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Scalars in Common ..
      CHARACTER*6        SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      MINMN = MIN( M, N )
      EPS = DLAMCH( 'Epsilon' )
*
*     Copy the matrix A to the array AF.
*
      CALL DLACPY( 'Full', M, N, A, LDA, AF, LDA )
*
*     Factorize the matrix A in the array AF.
*
      SRNAMT = 'DGELQF'
      CALL DGELQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy details of Q
*
      CALL DLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
      IF( N.GT.1 )
     $   CALL DLACPY( 'Upper', M, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
*
*     Generate the n-by-n matrix Q
*
      SRNAMT = 'DORGLQ'
      CALL DORGLQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy L
*
      CALL DLASET( 'Full', M, N, ZERO, ZERO, L, LDA )
      CALL DLACPY( 'Lower', M, N, AF, LDA, L, LDA )
*
*     Compute L - A*Q'
*
      CALL DGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q,
     $            LDA, ONE, L, LDA )
*
*     Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) .
*
      ANORM = DLANGE( '1', M, N, A, LDA, RWORK )
      RESID = DLANGE( '1', M, N, L, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL DLASET( 'Full', N, N, ZERO, ONE, L, LDA )
      CALL DSYRK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, L,
     $            LDA )
*
*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
      RESID = DLANSY( '1', 'Upper', N, L, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
*
      RETURN
*
*     End of DLQT01
*
      END
 |