| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 
 |       SUBROUTINE DLQT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), AF( LDA, * ), L( LDA, * ),
     $                   Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  DLQT02 tests DORGLQ, which generates an m-by-n matrix Q with
*  orthonornmal rows that is defined as the product of k elementary
*  reflectors.
*
*  Given the LQ factorization of an m-by-n matrix A, DLQT02 generates
*  the orthogonal matrix Q defined by the factorization of the first k
*  rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
*  checks that the rows of Q are orthonormal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q to be generated.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q to be generated.
*          N >= M >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. M >= K >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The m-by-n matrix A which was factorized by DLQT01.
*
*  AF      (input) DOUBLE PRECISION array, dimension (LDA,N)
*          Details of the LQ factorization of A, as returned by DGELQF.
*          See DGELQF for further details.
*
*  Q       (workspace) DOUBLE PRECISION array, dimension (LDA,N)
*
*  L       (workspace) DOUBLE PRECISION array, dimension (LDA,M)
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*
*  TAU     (input) DOUBLE PRECISION array, dimension (M)
*          The scalar factors of the elementary reflectors corresponding
*          to the LQ factorization in AF.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M)
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          The test ratios:
*          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   ROGUE
      PARAMETER          ( ROGUE = -1.0D+10 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      DOUBLE PRECISION   ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANSY
      EXTERNAL           DLAMCH, DLANGE, DLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMM, DLACPY, DLASET, DORGLQ, DSYRK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX
*     ..
*     .. Scalars in Common ..
      CHARACTER*6        SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      EPS = DLAMCH( 'Epsilon' )
*
*     Copy the first k rows of the factorization to the array Q
*
      CALL DLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
      CALL DLACPY( 'Upper', K, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
*
*     Generate the first n columns of the matrix Q
*
      SRNAMT = 'DORGLQ'
      CALL DORGLQ( M, N, K, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy L(1:k,1:m)
*
      CALL DLASET( 'Full', K, M, ZERO, ZERO, L, LDA )
      CALL DLACPY( 'Lower', K, M, AF, LDA, L, LDA )
*
*     Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)'
*
      CALL DGEMM( 'No transpose', 'Transpose', K, M, N, -ONE, A, LDA, Q,
     $            LDA, ONE, L, LDA )
*
*     Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) .
*
      ANORM = DLANGE( '1', K, N, A, LDA, RWORK )
      RESID = DLANGE( '1', K, M, L, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL DLASET( 'Full', M, M, ZERO, ONE, L, LDA )
      CALL DSYRK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, L,
     $            LDA )
*
*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
      RESID = DLANSY( '1', 'Upper', M, L, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
*
      RETURN
*
*     End of DLQT02
*
      END
 |