1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
SUBROUTINE DQLT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), L( LDA, * ),
$ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
$ WORK( LWORK )
* ..
*
* Purpose
* =======
*
* DQLT02 tests DORGQL, which generates an m-by-n matrix Q with
* orthonornmal columns that is defined as the product of k elementary
* reflectors.
*
* Given the QL factorization of an m-by-n matrix A, DQLT02 generates
* the orthogonal matrix Q defined by the factorization of the last k
* columns of A; it compares L(m-n+1:m,n-k+1:n) with
* Q(1:m,m-n+1:m)'*A(1:m,n-k+1:n), and checks that the columns of Q are
* orthonormal.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix Q to be generated. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix Q to be generated.
* M >= N >= 0.
*
* K (input) INTEGER
* The number of elementary reflectors whose product defines the
* matrix Q. N >= K >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* The m-by-n matrix A which was factorized by DQLT01.
*
* AF (input) DOUBLE PRECISION array, dimension (LDA,N)
* Details of the QL factorization of A, as returned by DGEQLF.
* See DGEQLF for further details.
*
* Q (workspace) DOUBLE PRECISION array, dimension (LDA,N)
*
* L (workspace) DOUBLE PRECISION array, dimension (LDA,N)
*
* LDA (input) INTEGER
* The leading dimension of the arrays A, AF, Q and L. LDA >= M.
*
* TAU (input) DOUBLE PRECISION array, dimension (N)
* The scalar factors of the elementary reflectors corresponding
* to the QL factorization in AF.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (M)
*
* RESULT (output) DOUBLE PRECISION array, dimension (2)
* The test ratios:
* RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS )
* RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION ROGUE
PARAMETER ( ROGUE = -1.0D+10 )
* ..
* .. Local Scalars ..
INTEGER INFO
DOUBLE PRECISION ANORM, EPS, RESID
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DLACPY, DLASET, DORGQL, DSYRK
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX
* ..
* .. Scalars in Common ..
CHARACTER*6 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
RETURN
END IF
*
EPS = DLAMCH( 'Epsilon' )
*
* Copy the last k columns of the factorization to the array Q
*
CALL DLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
IF( K.LT.M )
$ CALL DLACPY( 'Full', M-K, K, AF( 1, N-K+1 ), LDA,
$ Q( 1, N-K+1 ), LDA )
IF( K.GT.1 )
$ CALL DLACPY( 'Upper', K-1, K-1, AF( M-K+1, N-K+2 ), LDA,
$ Q( M-K+1, N-K+2 ), LDA )
*
* Generate the last n columns of the matrix Q
*
SRNAMT = 'DORGQL'
CALL DORGQL( M, N, K, Q, LDA, TAU( N-K+1 ), WORK, LWORK, INFO )
*
* Copy L(m-n+1:m,n-k+1:n)
*
CALL DLASET( 'Full', N, K, ZERO, ZERO, L( M-N+1, N-K+1 ), LDA )
CALL DLACPY( 'Lower', K, K, AF( M-K+1, N-K+1 ), LDA,
$ L( M-K+1, N-K+1 ), LDA )
*
* Compute L(m-n+1:m,n-k+1:n) - Q(1:m,m-n+1:m)' * A(1:m,n-k+1:n)
*
CALL DGEMM( 'Transpose', 'No transpose', N, K, M, -ONE, Q, LDA,
$ A( 1, N-K+1 ), LDA, ONE, L( M-N+1, N-K+1 ), LDA )
*
* Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) .
*
ANORM = DLANGE( '1', M, K, A( 1, N-K+1 ), LDA, RWORK )
RESID = DLANGE( '1', N, K, L( M-N+1, N-K+1 ), LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M ) ) ) / ANORM ) / EPS
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute I - Q'*Q
*
CALL DLASET( 'Full', N, N, ZERO, ONE, L, LDA )
CALL DSYRK( 'Upper', 'Transpose', N, M, -ONE, Q, LDA, ONE, L,
$ LDA )
*
* Compute norm( I - Q'*Q ) / ( M * EPS ) .
*
RESID = DLANSY( '1', 'Upper', N, L, LDA, RWORK )
*
RESULT( 2 ) = ( RESID / DBLE( MAX( 1, M ) ) ) / EPS
*
RETURN
*
* End of DQLT02
*
END
|