1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  
     | 
    
            DOUBLE PRECISION FUNCTION DQPT01( M, N, K, A, AF, LDA, TAU, JPVT,
     $                 WORK, LWORK )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            JPVT( * )
      DOUBLE PRECISION   A( LDA, * ), AF( LDA, * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  DQPT01 tests the QR-factorization with pivoting of a matrix A.  The
*  array AF contains the (possibly partial) QR-factorization of A, where
*  the upper triangle of AF(1:k,1:k) is a partial triangular factor,
*  the entries below the diagonal in the first k columns are the
*  Householder vectors, and the rest of AF contains a partially updated
*  matrix.
*
*  This function returns ||A*P - Q*R||/(||norm(A)||*eps*M)
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrices A and AF.
*
*  N       (input) INTEGER
*          The number of columns of the matrices A and AF.
*
*  K       (input) INTEGER
*          The number of columns of AF that have been reduced
*          to upper triangular form.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA, N)
*          The original matrix A.
*
*  AF      (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The (possibly partial) output of DGEQPF.  The upper triangle
*          of AF(1:k,1:k) is a partial triangular factor, the entries
*          below the diagonal in the first k columns are the Householder
*          vectors, and the rest of AF contains a partially updated
*          matrix.
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A and AF.
*
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
*          Details of the Householder transformations as returned by
*          DGEQPF.
*
*  JPVT    (input) INTEGER array, dimension (N)
*          Pivot information as returned by DGEQPF.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK >= M*N+N.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
      DOUBLE PRECISION   NORMA
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   RWORK( 1 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANGE
      EXTERNAL           DLAMCH, DLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DORMQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      DQPT01 = ZERO
*
*     Test if there is enough workspace
*
      IF( LWORK.LT.M*N+N ) THEN
         CALL XERBLA( 'DQPT01', 10 )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
      NORMA = DLANGE( 'One-norm', M, N, A, LDA, RWORK )
*
      DO 30 J = 1, K
         DO 10 I = 1, MIN( J, M )
            WORK( ( J-1 )*M+I ) = AF( I, J )
   10    CONTINUE
         DO 20 I = J + 1, M
            WORK( ( J-1 )*M+I ) = ZERO
   20    CONTINUE
   30 CONTINUE
      DO 40 J = K + 1, N
         CALL DCOPY( M, AF( 1, J ), 1, WORK( ( J-1 )*M+1 ), 1 )
   40 CONTINUE
*
      CALL DORMQR( 'Left', 'No transpose', M, N, K, AF, LDA, TAU, WORK,
     $             M, WORK( M*N+1 ), LWORK-M*N, INFO )
*
      DO 50 J = 1, N
*
*        Compare i-th column of QR and jpvt(i)-th column of A
*
         CALL DAXPY( M, -ONE, A( 1, JPVT( J ) ), 1, WORK( ( J-1 )*M+1 ),
     $               1 )
   50 CONTINUE
*
      DQPT01 = DLANGE( 'One-norm', M, N, WORK, M, RWORK ) /
     $         ( DBLE( MAX( M, N ) )*DLAMCH( 'Epsilon' ) )
      IF( NORMA.NE.ZERO )
     $   DQPT01 = DQPT01 / NORMA
*
      RETURN
*
*     End of DQPT01
*
      END
 
     |