| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 
 |       SUBROUTINE DTBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
     $                   SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            KD, LDAB, LDB, LDX, N, NRHS
      DOUBLE PRECISION   RESID, SCALE, TSCAL
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AB( LDAB, * ), B( LDB, * ), CNORM( * ),
     $                   WORK( * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  DTBT03 computes the residual for the solution to a scaled triangular
*  system of equations  A*x = s*b  or  A'*x = s*b  when A is a
*  triangular band matrix. Here A' is the transpose of A, s is a scalar,
*  and x and b are N by NRHS matrices.  The test ratio is the maximum
*  over the number of right hand sides of
*     norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
*  where op(A) denotes A or A' and EPS is the machine epsilon.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix A is upper or lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  TRANS   (input) CHARACTER*1
*          Specifies the operation applied to A.
*          = 'N':  A *x = b  (No transpose)
*          = 'T':  A'*x = b  (Transpose)
*          = 'C':  A'*x = b  (Conjugate transpose = Transpose)
*
*  DIAG    (input) CHARACTER*1
*          Specifies whether or not the matrix A is unit triangular.
*          = 'N':  Non-unit triangular
*          = 'U':  Unit triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  KD      (input) INTEGER
*          The number of superdiagonals or subdiagonals of the
*          triangular band matrix A.  KD >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrices X and B.  NRHS >= 0.
*
*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
*          The upper or lower triangular band matrix A, stored in the
*          first kd+1 rows of the array. The j-th column of A is stored
*          in the j-th column of the array AB as follows:
*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= KD+1.
*
*  SCALE   (input) DOUBLE PRECISION
*          The scaling factor s used in solving the triangular system.
*
*  CNORM   (input) DOUBLE PRECISION array, dimension (N)
*          The 1-norms of the columns of A, not counting the diagonal.
*
*  TSCAL   (input) DOUBLE PRECISION
*          The scaling factor used in computing the 1-norms in CNORM.
*          CNORM actually contains the column norms of TSCAL*A.
*
*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
*          The computed solution vectors for the system of linear
*          equations.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
*          The right hand side vectors for the system of linear
*          equations.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
*
*  RESID   (output) DOUBLE PRECISION
*          The maximum over the number of right hand sides of
*          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IX, J
      DOUBLE PRECISION   BIGNUM, EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, IDAMAX, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DLABAD, DSCAL, DTBMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0
*
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
      EPS = DLAMCH( 'Epsilon' )
      SMLNUM = DLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
*
*     Compute the norm of the triangular matrix A using the column
*     norms already computed by DLATBS.
*
      TNORM = ZERO
      IF( LSAME( DIAG, 'N' ) ) THEN
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 10 J = 1, N
               TNORM = MAX( TNORM, TSCAL*ABS( AB( KD+1, J ) )+
     $                 CNORM( J ) )
   10       CONTINUE
         ELSE
            DO 20 J = 1, N
               TNORM = MAX( TNORM, TSCAL*ABS( AB( 1, J ) )+CNORM( J ) )
   20       CONTINUE
         END IF
      ELSE
         DO 30 J = 1, N
            TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
   30    CONTINUE
      END IF
*
*     Compute the maximum over the number of right hand sides of
*        norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
*
      RESID = ZERO
      DO 40 J = 1, NRHS
         CALL DCOPY( N, X( 1, J ), 1, WORK, 1 )
         IX = IDAMAX( N, WORK, 1 )
         XNORM = MAX( ONE, ABS( X( IX, J ) ) )
         XSCAL = ( ONE / XNORM ) / DBLE( KD+1 )
         CALL DSCAL( N, XSCAL, WORK, 1 )
         CALL DTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
         CALL DAXPY( N, -SCALE*XSCAL, B( 1, J ), 1, WORK, 1 )
         IX = IDAMAX( N, WORK, 1 )
         ERR = TSCAL*ABS( WORK( IX ) )
         IX = IDAMAX( N, X( 1, J ), 1 )
         XNORM = ABS( X( IX, J ) )
         IF( ERR*SMLNUM.LE.XNORM ) THEN
            IF( XNORM.GT.ZERO )
     $         ERR = ERR / XNORM
         ELSE
            IF( ERR.GT.ZERO )
     $         ERR = ONE / EPS
         END IF
         IF( ERR*SMLNUM.LE.TNORM ) THEN
            IF( TNORM.GT.ZERO )
     $         ERR = ERR / TNORM
         ELSE
            IF( ERR.GT.ZERO )
     $         ERR = ONE / EPS
         END IF
         RESID = MAX( RESID, ERR )
   40 CONTINUE
*
      RETURN
*
*     End of DTBT03
*
      END
 |